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Introduction

In January 2017, Dr. Francis E. Su, president of the Mathematical Association
of America, gave his retiring presidential address, Mathematics for Human
Flourishing23. In this address and the subsequent book [1], Su describes ways
that the practice of mathematics can help human beings cultivate virtues which
in turn enable us live the good life. He identifies several desires that encourage
the cultivation of virtue, among them exploration, play, truth, justice, and
beauty.

This book uses guided exploration to investigate mathematical topics
that specifically meet those desires. We will explore the Rubik’s cube and
other puzzles and thus play with mathematics. We’ll see how deductive rea-
soning can be used to argue for truth, while also exploring its limitations.
Justice will be explored by application of mathematics to democracy and
the networks used to exploit our fellow image-bearers. And we’ll finish the
semester with projects that explore beauty in mathematics. ReferencesRefer-
encesg:references:idp105544742310032 F. E. Su, C. Jackson, Mathematics for
Human Flourishing. Yale University Press, 2020.

2https://mathyawp.wordpress.com/2017/01/08/mathematics-for-human-flourishing/
3In 2018, he gave an expanded version of this talk as a First Mondays address at Dordt

College.
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A Note to Students

This work was compiled with some strong opinions.
The first is that, as with a sport, instrument, or nearly any other skill,

you can’t learn mathematics without doing mathematics. Thus, there are few
worked-out examples in this book. We would rather spend a long time in
productive struggle to understand an idea deeply than be spoon-fed solutions.

The second is that most people’s ideas of what counts as a mathematical
question are far too narrow. Mathematics is not merely geometry, algebra, and
calculus (maybe with a dash of statistics for good measure). Mathematics is
a way of thinking; it’s about abstraction, deductive reasoning, and problem-
solving. This way of thinking can be applied in surprising places, and can lead
to delight and wonder at the world around us. We will explore some of these
questions this semester.
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A Note to Instructors

First, thank you for taking a look at this text! If you have any questions or
suggestions, please don’t hesitate to email me4.

This text is sufficient for a one-semester “liberal arts” math course. My
stated goal with the text is to expand its readers’ notion of the sorts of questions
that mathematics can help answer. In addition to those found here, one could
choose many different topics for such a course, and I hope to add more over
the coming years. I would also welcome suggestions and contributions from
the text’s users, so feel free to get in touch if you’d like to explore these ideas
further. Additionally, the independent nature of the topics in such a course
means that the order in which things are covered matters little; I typically
cover them in more or less the order presented here.

The text is designed with a focus on active learning. I’ve found that it works
particularly well as a sequenced collection of small-group activities. Also, as
the Preface suggests, I’ve designed and grouped these topics and activities so
that they can be read with Francis Su and Christopher Jackson’s Mathematics
for Human Flourishing. I typically have students read and discuss Chapters
1-5 as we are transitioning from Play to Truth, Chapters 6-7 as we transition
from Truth to Power, Chapters 8-11 as we shift from Power to Justice, and
Chapters 12-13 (and the epilogue) near the end of the course. I am consistently
impressed by their insights and the connections they make between their own
major disciplines and mathematics as described by Su and Jackson.

4mailto:mike.janssen@dordt.edu?subject=EMM
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Versions of this text

There are three main versions of this text.

• The HTML version, avaialable at https://emmath.org5, is the author’s
preferred version. It is easy to update and can contain things like Sage
cells, links to spreadsheets for doing lots of arithemtic, and video examples.

• For various reasons, a PDF version is often helpful. You can download
that here (forthcoming).

• Finally, the PreTeXt6 source code is available on GitHub7.

5https://emmath.org
6https://pretextbook.org
7https://github.com/mkjanssen/emmath
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Part I

Play
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Chapter 1

The Cube

We begin our mathematical explorations in a place that may seem unusual.
The Rubik’s Cube, invented1 in the 1970s by Hungarian architecture professor
Erno Rubik, is the best-selling toy of all time. It is also a rich mathematical
playscape, a tactile means of exploring and challenging our fundamental ideas
around what counts as an arithmetic operation.

The Cube’s colorful, playful nature also underscores our purpose in beginning
with it. Specifically, exploring the Cube will help us develop some of the virtues
Francis Su identifies in [1] under the desire of play: exploring the Cube will
hopefuly pique your curiosity and build your patience and perseverance. Solving
it will require you to change perspectives and build confidence in struggle. And,
I hope, the satisfaction and joy you experience in finally solving it will engender
an openness of spirit that we will carry into further explorations for the rest of
the text.

As we begin, I also wish to acknowledge the efforts of the Discovering the
Art of Mathematics2 project, especially the Games and Puzzles3 book. I learned
the Rubik’s Cube by reading and teaching their work, and it is impossible to
overstate their influence on this chapter.

1.1 Introduction and Background

Motivating Questions.

In this section, we will explore the following questions.
1. What does it mean to play?

2. What are the components of the Cube?

3. What are some of the elementary mathematical properties of the
Cube?

1Or, to use Rubik’s word, discovered.
2https://www.artofmathematics.org/
3https://www.artofmathematics.org/books/games-and-puzzles
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1.1.1 Thinking about Play
Exploration 1.1.1 By yourself or in small groups, consider the questions:

1. What are the essential qualities of play? That is, what makes one activity
play, and another not?

2. What does it mean to be playful in your own major disciplines?

3. What does it mean to be an explorer in your major disciplines?

4. What are you excited about this semester? Your answer can be from one
of your classes or outside of your classes.

Write your answers in your notes. We’ll discuss your responses before working
on Investigation 1.1.2.

The Dutch historian and cultural theorist Johan Huizinga identified several
elements of play: it should be voluntary; it should be distinct from ordinary
life, taking place within its circumscribed time and locality, since dubbed the
“magic circle”; and it, like a game of chess or solve of a Rubik’s cube, can be
repeated.

It is the goal of this text to make mathematics playful, inasmuch as is
possible. We recognize that you may be reading this for a class which was
not voluntary, and you are constrained in your mathematical play by the
requirements put upon you by your instructor. However, we encourage you to
approach not only the solution of the Rubik’s cube from a playful posture, but
subsequent explorations as well.

1.1.2 Exploring the Cube
Investigation 1.1.2 In your groups, investigate your Cubes. What do you
notice? What do you wonder? Make a list of as many observations and questions
as you can, and write them in your notes.
Definition 1.1.3 The little cubes which make up the Cube are often called
cubies. The cubies located at the corners are imaginatively called corner
cubies, the cubies located at the centers center cubies, and the others edge
cubies. ♦

Investigation 1.1.4 In this investigation we’ll consider the corner cubies. Hold
your Cube with the white center cubie facing up and the red center cubie facing
you.

1. How many corners are there?

2. How many stickers does a corner cubie have?

3. Can you move a corner cubie to a position other than a corner? Explain
your reasoning.

4. Identify all the positions on the Cube to which a corner cubie can be
moved while keeping the white center cubie on top and red in front.

As always, make sure you can explain your answers.
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Investigation 1.1.5 In this investigation we’ll consider the edge cubies. Hold
your Cube with the white center cubie facing up and the red center cubie facing
you.

1. How many edge cubies are there?

2. How many stickers does an edge cubie have?

3. Can you move an edge cubie to a position other than an edge? Explain
your reasoning.

4. Identify all the positions on the Cube to which an edge cubie can be
moved while keeping the white center cubie on top and red in front.

As always, make sure you can explain your answers.

Investigation 1.1.6 In this investigation we’ll consider the center cubies. Hold
your Cube with the white center cubie facing up and the red center cubie facing
you.

1. How many center cubies are there?

2. How many stickers does an center cubie have?

3. Can you move a center cubie to a position other than a center? Explain
your reasoning.

4. Identify all the positions on the Cube to which a center cubie can be
moved while keeping the white center cubie on top and red in front.

As always, make sure you can explain your answers.
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Question.

How can you tell when a cubie is in the correct location? How can you
tell when it is oriented correctly? Is there a difference?1

In this section, we thought a bit about play, and began exploring our Cubes.
There are three types of cubies: corners, edges, and centers. We finally noted
that since the centers don’t move, we can use them to determine if a given
cubie is in the right location by checking to see that the stickers on the cubie
match the colors of the centers.

1.1.3 Exercises
1. Do some research on the internet to determine the number of possible

configurations of a Rubik’s Cube. It’s quite large, so think of one or two
ways to put this number in context (for instance, a stack of this number
of pennies would be how high?). Be prepared to share your examples.

1.2 Describing the Cube

Motivating Questions.

In this section, we will explore the following questions.
1. What are faces and layers, and what methods exist for solving

them?

2. How can we describe a complex series of Cube moves?

3. What is the order of a Cube move?

In this section, we’ll define a few terms and work on an initial exploration
of the Cube’s white layer. Then, we’ll discuss the need for a precise method
communicating about our Cubes, and introduce some standard notation.

1.2.1 Faces and Layers
We begin with a definition.

Definition 1.2.1 A face of the Cube refers to one of its sides. We say a face
is solved if all the stickers on that side are the same color. ♦

1Does it depend on the cubie?
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There are many ways to solve the Cube, and we’ll explore one approach
later in this chapter. A crucial step in learning to solve the Cube is learning to
solve one face.

Challenge.

Scramble your Cube. Then solve the white face. If you have not done
this before (or even if you have), this may take hours or days, not
minutes! Avoid relying on any outside resources (including websites,
friends, etc.). When you solve it, congratulations! Then scramble the
face and solve it again. Repeat this process until you can reliably do
it in just a few minutes. Once you can reliably solve the white face,
describe, in writing, your methods as clearly and precisely as you can.
What challenges did you have to overcome? How did you overcome
them?

Congratulations on solving a face of your Cube! But a question comes to
mind. When your white face is in its solved state, are all the cubies on the
white face in the correct location?
Definition 1.2.2 A layer of the Cube consists of a face and all of the stickers
on Cubies which compose the face. A layer is solved if all of the Cubies in the
layer are in the correct location with the correct orientation. ♦

Question 1.2.3 What is the difference between a face and a layer? How is
solving a layer different than solving a face? �

Challenge.

Scramble your Cube and then solve the white layer. As before, this may
take hours or days. When you solve it, congratulations! Scramble it
and do it again. Once you can reliably solve the white layer, describe,
in writing, your methods as clearly and precisely as you can.

1.2.2 The Need for Notation
Discussion 1.2.4 Find a partner. Take turns describing verbally and without
pointing to your Cube your method for moving a corner cubie to its proper
position. Similarly, verbally describe your method for moving an edge cubie to
its proper position.
Discussion 1.2.5 As you probably noticed, it is challenging to orally describe
complex/technical ideas in much detail without becoming lost. Is it easier to
describe your cubie movements in writing? Why or why not?

Every area of inquiry has an associated collection of terminology and sym-
bology. At its best, this terminology enables efficient and clear communication.
However, terminology can often be a barrier. Thus, we want to avoid intro-
ducing unnecessary or confusing jargon whenever possible. However, as I hope
Discussion 1.2.4 and Discussion 1.2.5 underscore, a lack of terminology or
symbols severely impairs our ability to communicate deep technical ideas. It
is with this background that we introduce the following notation, which has
become standard in the Cubing community.

Definition 1.2.6 Hold the Cube in such a way that you are looking at one of
the faces (your choice).

• The face you are looking at is referred to as the front (F) face.
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• The face on the side opposite the front is referred to as the back (B) face.

• The face on the right side is referred to as the right (R) face.

• The face opposite the right is the left (L) face.

• The face on the top of the Cube is the up (U) face.

• The face on the bottom of the Cube is the down (D) face.

A graphical version appears in Figure 1.2.7.

RL

U

D
F

B

Figure 1.2.7
♦

Activity 1.2.8 List the colors of each of the six faces in Figure 1.2.7.
As we we will see momentarily, the names described in Definition 1.2.6 not

only help us refer to faces, but also moves of the Cube which help us solve it.
In order to understand what a given move does to the Cube, we will need to
refer to certain cubies by location. The following definition enables this.

Definition 1.2.9 A cubie is named by the face(s) on which it sits, using
lowercase letters. ♦

Activity 1.2.10 Consider the scrambled Cube in Figure 1.2.11.
1. What colors are the `fu cubie?

2. Give the colors of the br cubie.

3. How can you tell whether the cubie in the named location is a corner or
edge cubie?

4. How many letters are required to name a center cubie?

5. Where is the edge cubie that is blue and orange?
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Figure 1.2.11 A scrambled cube.
We are most interested in using our new notation to describe moves of the

various faces. We thus make the following definition.

Definition 1.2.12 A given face name, e.g., R, describes a 90◦ clockwise turn
of that face, as you look at the face. A given face name with prime symbol, e.g.,
R′, denotes a 90◦ counterclockwise turn of that face, as you look at the face. A
sequence of face moves is written multiplicatively, left to right. We may use
parentheses and exponents to write our moves more compactly. ♦

Exploration 1.2.13 Consider the following questions in the context of a
completely solved cube as pictured in Figure 1.2.14.

1. After performing the move R, what color(s) will be on the Up face?

2. Again starting from a solved cube, perform the move L. What color(s)
are on the Up face?

3. Explain the difference in your answers to the first two questions.

4. How are F 3 and F ′ related?

5. Consider the Cube move RF 2U(LDR)3. Which face will you turn first:
the left face, or the front face?

6. Again consider the Cube move RF 2U(LDR)3. How many times in this
move will we turn the right face?

7. What would it mean for two cube moves to be equal? Test your definition
by determining whether LD = DL.

8. Suppose X and Y are two cube moves. When, if ever, is XY = Y X?

Figure 1.2.14 A solved cube.
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1.2.3 Order
A useful algebraic concept for describing Cube moves is that of order.
Definition 1.2.15 The order of a cube move M is the least number of times
n > 1 that M can be repeated before a solved Cube is solved again. We write
|M | = n. ♦

Example 1.2.16 The order of R is 4, since 4 clockwise quarter-turns of the
right face of a solved Cube results in a solved Cube, and no fewer number of
turns results in a solved Cube. �

Exploration 1.2.17
1. What is |U2|?

2. Calculate |R3|. Why does this make sense?

3. Calculate |RUR′U ′|.

Conclusion. In this section, we began a systematic exploration of the properties
of the Cube. First, we described the need for a notational shorthand in solving
the white face and layer.

The standard notation refers to each face as you look at it, ignoring color,
and describes a 90◦ clockwise turn of the face. So, FR means to first turn the
front face 90◦ clockwise, then the right face 90◦ clockwise. We then noted that
we can refer to a cubie by describing the face(s) on which it sits (using lowercase
letters to distinguish cubies from faces): three letters refer to a corner, as it
sits at the intersection of three faces; two letters refer to an edge, and one to a
center.

We concluded by introducing the idea of order, which will help us analyze
and understand more complex sequences of Cube moves in the next section.

1.2.4 Exercises
1. Calculate |RL|.
2. Consider the Cube pictured below. What are the colors of the cubie is in

the rbd position?

3. Do some research online to find a sequence of Cube moves which gives the
highest possible order. What is the move, and what is the order?
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1.3 Moving Cubies

Motivating Questions.

In this section, we will explore the following questions.
1. How can we move the corner cubies so they are in the correct

location?

2. How can we describe the movement of the middle “slice” of our
Cube?

3. How can we move the edge cubies so they are in the correct
location?

Our goal in this chapter is to explore, and eventually solve, the Cube. To
do this, every cubie must be in the correct location with the correct orientation.
In this section, we focus on two moves which will allow us to put the cubies in
the correct location. Once they are in the correct location, we’ll see moves in
the next section which will help us orient them correctly, enabling us to (finally)
solve the Cube.

We begin by considering Cube Move 1.3.1.

Cube Move 1.3.1 Moving Corners. Consider the following sequence of
Cube moves.

U ′R′D′RUR′DR

Exploration 1.3.2 The Cube move described in Cube Move 1.3.1 moves some
of the corners on the front face of the Cube.

1. By performing this move several times, identify on the blank Cube below
what is happening to the front face of the Cube.

2. Using the cubie notation described in Definition 1.2.9, describe what
happens to the front face of the Cube after performing this move.

3. Given what happens to the front face, exercise your human creativity and
suggest a short name/abbreviation for this move.

4. What is the order of the move?

5. Practice the move until you can reliably execute it.

Figure 1.3.3 A blank cube.
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Activity 1.3.4 Now that you have identified exactly what Cube Move 1.3.1
does, use it to solve as much of your Cube it enables.

In order to move the edges, it will be helpful to add one more type of
fundamental Cube move to our repertoire.

Definition 1.3.5 By SR we mean a clockwise rotation of the (vertical) middle
slice as we look at the right face.

SR−−−−−→

♦

Cube Move 1.3.6 Moving Edges. Consider the following sequence of Cube
moves.

S2
RU
′S′RU

2SRU
′S2

R

Exploration 1.3.7 The Cube move described in Cube Move 1.3.6 moves some
of the edges on the up face of the Cube.

1. By performing this move several times, identify on the blank Cube below
what is happening to the up face of the Cube.

2. Using the cubie notation described in Definition 1.2.9, describe what is
happens to the up face of the Cube after performing this move.

3. Given what happens to the up face, exercise your human creativity and
suggest a short name/abbreviation for this move.

4. What is the order of the move?

5. Practice the move until you can reliably execute it.

Figure 1.3.8 A blank cube.
Activity 1.3.9 Now that you have identified exactly what Cube Move 1.3.1
and Cube Move 1.3.6 do, use them to put every cubie on your Cube in its
correct location.

Conclusion. In this section, we focused on two moves that enable us to put our
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cubies in the correct location. We first found Cube Move 1.3.1, which affects
corners on the front face, and no other cubies. Similarly, Cube Move 1.3.6
affects edges on the up face, and no other cubies. We were then able to put
every cubie on our Cube in the correct location. Hurray!

Exercises
1. Consider the state of Lila’s Cube in Figure 1.3.10. She is so close to solving

it! Can you help her finish?

Figure 1.3.10
2. Sam is nearly done with his Cube; it’s pictured in Figure 1.3.11. Can you

help him finish?

Figure 1.3.11
3. Thanks to your help, Lila solved her Cube in Exercise 1.3.1, but now

she needs more help! Can you help her finish the Cube pictured in
Figure 1.3.12?

Figure 1.3.12
4. Consider the situation in Figure 1.3.13. Why will Cube Move 1.3.1 alone

be insufficient for putting the corners in their correct locations? Devise a
strategy for putting the corners in the correct locations.
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Figure 1.3.13

1.4 Reorienting Cubies

Motivating Questions.

In this section, we will explore the following questions.
1. How can we change the orientation of the corner cubies?

2. How can we change the orientation of the edge cubies?

3. How can we apply our four Cube moves to solve the Cube?

In Section 1.3, we considered ways of moving certain edge and corner cubies.
The key that allows us to use Cube Move 1.3.1 and Cube Move 1.3.6 to put
your cubies in the correct location is that each move affects precisely three
cubies. All others are left unmoved. By using just Cube Move 1.3.1 and Cube
Move 1.3.6, we can thus put each cubie in the correct location. However, even
if a cubie is in the correct location, it may be that its stickers are on the wrong
faces—in this case, it needs to be reoriented.

In this section, we will see how to reorient cubies once they are in the correct
location. To do so, we’ll learn two moves: one that reorients corners, and one
that reorients edges. Once we are able to put each cubie in the correct location,
and then orient it correctly, each scrambled Cube becomes a puzzle, solvable
by clever application of these moves.

We begin by exploring a move that reorients two corners.

Cube Move 1.4.1 Consider the following sequence of Cube moves.

(R′D2RB′U2B)2

Exploration 1.4.2 Reorienting Corners. The Cube move described in
Cube Move 1.4.1 reorients two corners: one on the Up face, and one on the
Down face.

1. By performing this move several times, identify on the blank Cube below
what is happening to the Up face of the Cube. Describe what is happening
to the Down face as well.

2. Using the cubie notation described in Definition 1.2.9, describe what is
happens to the Up and Down faces of the Cube after performing this
move.

3. Given what this move does, exercise your human creativity and suggest a
short name/abbreviation for this move.

4. What is the order of the move?
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5. Practice the move until you can reliably execute it.

Figure 1.4.3 A blank cube.
Our last Cube move will reorient two edge cubies. Recall Definition 1.3.5.

Cube Move 1.4.4 Consider the following sequence of Cube moves.

(SRU)3U(S′RU)3U

Exploration 1.4.5 Reorienting Edges. The Cube move described in Cube
Move 1.4.1 reorients two edges on the Up face.

1. By performing this move several times, identify on the blank Cube below
what is happening to the Up face of the Cube.

2. Using the cubie notation described in Definition 1.2.9, describe what is
happens to the Up face of the Cube after performing this move.

3. Given what this move does, exercise your human creativity and suggest a
short name/abbreviation for this move.

4. What is the order of the move?

5. Practice the move until you can reliably execute it.

Figure 1.4.6 A blank cube.
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Solving the Cube.

When you can consistently perform Cube Move 1.3.1, Cube Move 1.4.1,
Cube Move 1.3.6, and Cube Move 1.4.4, you can use them to solve the
Cube. You can use any strategy you want, but here is one to consider.

1. Put the corners in the correct location.

2. Put the edges in the correct location.

3. Reorient any corners that need reorienting.

4. Reorient any edges that need reorienting.

5. Celebrate!

6. Scramble the Cube and do it again.

Conclusion. In this section, we explored the last moves we need to solve the
Cube. We also described a strategy for solving the Cube. Our method of solving
the Cube is based on the corners-first (CF) method, which is distinct from the
layer-by-layer (LL) method which is often the first solving method people learn.
The first solution to the Cube, by Erno Rubik himself, was corners-first, and
the first world speed-cubing record (22.95 seconds) was done corners-first.

There are advantages and disadvantages to all solution methods. Advantages
to corners-first are:

• The move sequences are generally shorter in CF

• There are just a few important move sequences to memorize

• You generally don’t "break" your existing work and so can recover from
mistakes more easily

• The solution can scale from a leisurely solve of a few minutes or more to
quite fast solves

Exercises
1. Sam is nearly done with his Cube! Which of the Cube moves from this

section does he need? How many times will he have to perform it?

Figure 1.4.7
2. Lila is nearly done with her Cube! Which move from this section will be

helpful? How should she use it?
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Figure 1.4.8
3. Sam has gotten himself into a bit of a pickle. How can he apply our moves

to solve his Cube?

Figure 1.4.9
4. This configuration is known as the superflip. Describe what you see. Can

you achieve this on your Cube?

Figure 1.4.10



Part II

Truth
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As Francis Su identifies in [1], humans have an innate desire for truth.
Defining just what we mean by truth is tricky, so we’ll follow Su’s lead and
just say that “true statements are ones that align with reality”. In an age of
rampant disinformation, we seek to know what is actually true.

Mathematics is often thought of as one of the last bastions of objective truth.
One widely accepted cultural norm is that if a statement is quantitative, or can
be arrived at via a sequence of logical deductions, it is often considered "true",
whereas statements that cannot be presented in such a way live in the realm of
opinion. Yet, mathematics is a human endeavor; and what do mathematicians
mean when they talk of a statement being “true”, anyway? The answer might
surprise you.

In this unit, we’ll explore inductive and deductive reasoning, as well as formal
logic. We’ll explore the shortcomings of mathematical thinking in addition to
its strengths.

We again acknowledge our enormous debt to Discovering the Art of Mathe-
matics: Truth, Reasoning, Certainty, and Proof1 by Fleron, Hotchkiss, Ecke,
and von Renesse.

1https://www.artofmathematics.org/books/truth-reasoning-certainty-and-proof

https://www.artofmathematics.org/books/truth-reasoning-certainty-and-proof
https://www.artofmathematics.org/books/truth-reasoning-certainty-and-proof


Chapter 2

Inductive and Deductive Rea-
soning

In order to more fully explore the deductive reasoning employed in mathematical
explorations, we’ll first contrast it with the inductive reasoning common in
other areas of inquiry.

2.1 Inductive Reasoning

Motivating Questions.

In this section, we will explore the following questions.
1. What is truth? What is fact? Is there a difference?

2. What is inductive reasoning? When is it helpful? What are its
shortcomings?

We’ll begin by attempting to define truth and fact, and compare them. We’ll
then explore inductive reasoning in depth, considering its benefits shortcomings.

Discussion 2.1.1 What is truth? What is fact? How are the two concepts
related? How are they different? Under which category does the sentence
1 + 1 = 2 fall?
Activity 2.1.2 What’s my world? In the game What’s my World?, one
person thinks of a single law that defines a hypothetical world (e.g., “My world
does not contain things that start with the letter “C”.”). The other players
attempt to guess this governing law by taking turns asking questions of the
creator, such as “Does your world contain dogs? Does it contain cats?” and so
on. When one of the guessers believe they can identify the governing law, they
ask the creator.

Play a few rounds of this game, taking turns in the role of creator. Other than
asking the creator directly, how could you be certain that you had determined
the law of the world?
Definition 2.1.3 Inductive reasoning is the process of drawing general
conclusions from particular instances, generally known as data. ♦

The work of the guesser in Activity 2.1.2 is to employ inductive reasoning
to determine the general law put in place by the creator. This is the heart of

19
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the scientific endeavor: looking at the world in its orderliness and using our
curiosity and creativity to infer larger governing principles.

But how does this work in mathematics?
Exploration 2.1.4 Let’s play a game with dots and lines. We’ll start with
at least two dots (though you’ll probably want to increase this number pretty
quickly). The rules are:

• Split your dots into two groups, group A and group B, and draw each
group on its own line.

• Connect (some of) the dots from A to (some of) the dots in B with
lines. The lines don’t have to be straight—they can curve in any way you
want!—but each line should connect precisely two dots: one from A and
one from B.

• Each dot should be connected to at least one other dot—no lonely dots!

So, if I label four dots as X,Y, Z,W , one possible drawing is given in Figure 2.1.5.

X Y

Z W

Figure 2.1.5
However, there is a problem with this drawing: the lines cross! I know, this

wasn’t one of the rules above, but let’s add it.

• The lines must be drawn so that none of them cross.

Now consider the following questions.

1. Redraw the picture in Figure 2.1.5 so that none of the lines cross.

2. Give a name to drawings of figures like Figure 2.1.5 which can be drawn
so that none of the lines cross.

3. Which (non-crossing!) drawings are possible with two or three dots?

4. What other non-crossing drawings are possible with four dots? Five?

5. Based on your work here, do you think it will always be possible to draw
these pictures so that none of the lines cross? Explain your thinking.

Discussion 2.1.6 Based on our work in this section, what are some strengths
of inductive reasoning? What are some possible pitfalls? How can we minimize
these potential downsides?

In this section, we explored inductive reasoning. We saw that inductive reasoning
is the process of drawing general principles from data. It is generally the case
that, the more evidence we have for a conclusion, the more sure we can feel
about it. We note that, in mathematics and elsewhere, our inductive conclusions
are tentative, always subject to new data for which we must account.
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Exercises
1. Do some internet research on the Twin Prime Conjecture. What is it?

When was it first formulated? Is it true? Likely true?
2. The process of accounting for new data which challenges an accepted

perspective is often messy and exciting. Find a time in scientific history
in which new data and an accompanying theory challenged accepted
understanding, and write two or three paragraphs about it. What was the
status quo and how was it revised in light of new information?

2.2 Deductive Reasoning

Motivating Questions.

In this section, we will explore the following questions.
1. What is deductive reasoning? How does it differ from inductive

reasoning?

2. How is deductive reasoning employed in mathematics?

3. What are some strengths and weaknesses of deductive reasoning?

Formal mathematical reasoning is deductive (defined momentarily), and
begins with axioms, which are statements that should be self-evident and
taken to be true. Note that while axioms are not always explicitly stated, they
can be when necessary.

Investigation 2.2.1 The most famous set of axioms are Euclid’s postulates
for geometry, defined in The Elements1, which not only shaped thousands of
years of geometry, but solidified the deductive approach to doing and explaining
mathematics that we will explore in this unit. At the beginning of Book I of
The Elements, Euclid identified five postulates and five axioms.

Euclid’s postulates are:

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Any circle can be described given a center and (radial) distance.

4. All right angles are equal to one another.

5. If a straight line intersecting two straight lines make the interior angles on
the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on the side on which the angles are less than two right
angles.

Euclid’s axioms (or common notions) are:

1. Things which are equal to the same thing are also equal to one another.

2. If equals are added to equals, the wholes are equal.

3. If equals are subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

https://en.wikipedia.org/wiki/Euclid's_Elements
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The desired qualities of a system of axioms are:

1. consistency: we cannot deduce contradictory propositions, such as "God
exists" and "God does not exist" from the same set of axioms

2. simplicity: we have as few axioms as possible, and they are no more
complicated than they need to be

3. completeness: the system can answer every question we can think to
ask

In your groups, discuss Euclid’s postulates and common notions, perhaps in
view of the desired qualities of an axiomatic system. What strikes you as
being interesting or noteworthy? Make a list of at least 2-3 observations. Then
consider: on what axioms or assumptions do you make decisions (e.g., about
how to spend your time, resources, etc)?

The process of deductive reasoning in mathematics begins from a set of
generally agreed-upon axioms of set theory23 and uses logic to make inevitable
conclusions from those axioms. These conclusions are generally called theorems.
They are usually given as conditional statements of the form “If P , then Q,”
where P and Q are sensible statements. Moreover, since most deductive
statements are presented in conditional form, their scope is generally limited.
That is, the statement “if it is Monday, then we have math class” is only making
a claim about what happens on Mondays; it says nothing whatsoever about
any other day of the week. We will explore the consequences of this more in
Chapter 3.

The author Lewis Carroll loved logic puzzles (he was actually a mathematics
professor!), and wrote many of them. Here is one, axiomatized for easy reference.

Axiom 2.2.2 (Carroll). Consider the axioms:
1. If a kitten loves fish, then it is teachable.

2. Every kitten without a tail will play with a gorilla.

3. All kittens with whiskers love fish.

4. If a kitten has green eyes, then it is not teachable.

5. All kittens have whiskers or do not have tails.
Once you have a deductive argument that (generally) begins from your

premises and reasons, step-by-step, to your conclusion, you can write out the
argument in a short essay known as a proof. For our purposes, a proof is just a
convicing argument. It should be written at a level appropriate to the reader
and clearly lay out the steps necessary for a reader who accepts your hypotheses
to believe the conclusion. As an example, consider the following.

Example 2.2.3 All kittens with whiskers are teachable.
Proof. Suppose we have a kitten with whiskers. Let’s call him Arthur. By

Axiom 2.2.2 #3, Arthur loves fish. Since Arthur loves fish, Axiom 2.2.2 #1
implies that Arthur is teachable.

Since Arthur was an arbitrary kitten, we conclude that all kittens with
whiskers are teachable. �

There are several observations which are worth a moment of our time in
the proof in Example 2.2.3.

1https://en.wikipedia.org/wiki/Euclid’s_Elements
2https://en.wikipedia.org/wiki/Zermelo\T1\textendashFraenkel_set_theory
3It should be noted that there is disagreement about the Axiom of Choice, mostly due to

some of its surprising consequences.

https://en.wikipedia.org/wiki/Zermelo\T1\textendash Fraenkel_set_theory
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• We first note that the proof is written using standard conventions of
academic writing, including complete sentences, proper punctuation and
capitalization, etc. This is important! In order to convince someone that
your argument is valid, they need to be able to read it.

• While the statement to be proved is not written as “if P , then Q”, it can
be stated that way: “If A is a kitten with whiskers, then A is teachable”.
Thus, our proof begins by considering an arbitrary kitten with whiskers,
who we name Arthur. We observe, however, that there is nothing special
about Arthur that figures into our proof in a meaningful way, so the
argument will apply just as well to any kitten with whiskers we may find.

• In each step we take throughout the proof, we refer to the specific axiom
from Axiom 2.2.2 that allow us to take that step. It is valuable to be
able to do this, but generally we do not specifically refer to the axioms
by number. This is to improve the readability of the proof.

• Finally, note that our proof concludes with a conclusion: all kittens with
whiskers are teachable. This is good practice and sends an unmistakable
signal to the reader that you are done.

Now, prove the theorems that follow using Axiom 2.2.2.

Theorem 2.2.4 If a kitten has green eyes, then it does not love fish.
Theorem 2.2.5 If a kitten has a tail, then it does not have green eyes.
Theorem 2.2.6 Every kitten with green eyes will play with a gorilla.
Activity 2.2.7 Compare and contrast the structures of the proofs of the
preceding theorems. Can you clarify the general reasoning patterns you used to
prove them?
Discussion 2.2.8 We have now explored both inductive and deductive reasoning.
How are they similar? How are they different? How might you decide which
type of reasoning to employ in a given situation? What are their strengths and
weaknesses?

Conclusion. In this section, we explored deductive reasoning, which begins
from accepted axioms and premises and then reasons, step by logical step, toward
a conclusion. This is the primary form of reasoning used in mathematics. We
saw that while conclusions reached via deductive reasoning are generally tighter
and more certain, there are still some drawbacks.

The main drawback of deductive reasoning involves scope. We must begin
with axioms, so the axioms must be well-chosen and sensible. However, if one
disagrees with the choice of a set of axioms, then one must be willing to set
aside any results deduced from them (or, at least, deduced from the particular
axioms with which one disagrees).

A second drawback having to do with scope concerns the premises of a
conditional statement. In particular, if the premises of a statement are not
satisfied, the statement makes no assertion whatsoever (though, as we will see
in Chapter 3, there is still a consistent way to assign truth values to statements
whose premises are not satisfied).

Exercises
1. Invent one or two additional theorems that can be deduced from Ax-

iom 2.2.2. Prove them.
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2. While deductive proofs are crucial for the advancement of mathematical
knowledge, they can often be complex and hard to understand, even for
experts. An extreme example of this arose in the 1970s via the proof of
the four color theorem4. Read about this theorem and the controversy
surrounding its proof, and write a one-paragraph summary. What is the
current state of the theorem?

4https://en.wikipedia.org/wiki/Four_color_theorem

https://en.wikipedia.org/wiki/Four_color_theorem


Chapter 3

Modern Mathematical Logic

In Chapter 2, we explored two types of reasoning: inductive reasoning, and
deductive reasoning. The type of reasoning used most often in mathematics
is deductive reasoning. In the late 19th/early 20th century, logic itself was
mathematized by the likes of George Boole and Augustus De Morgan into a
propositional calculus. This gave mathematicians a means of determining the
truth value of a statement purely based on its inherent logical structure.

It is this method of calculating that we explore in this chapter.

3.1 Logical Connectives and Rules of Inference

Motivating Questions.

In this section, we will explore the following questions.
1. What is a proposition?

2. What are logical connectives? How can they be used to build new
propositions?

3. What does it mean for two propositions to be logically equivalent?

In the late 19th and early 20th centuries, mathematicians began mathematize
and formalize logic itself. Today we begin to explore these foundational issues.
We’ll start with some definitions.
Definition 3.1.1 A proposition is a declarative sentence which is either
true or false, but not both. An elementary proposition is a sentence with
a subject and a verb, but no connectives (such as and, or, not, if-then, or
if-and-only-if ). ♦

Activity 3.1.2 Determine which of the following are propositions (elementary
or otherwise). If a given sentence is a proposition, determine its truth value. If
it isn’t, explain why not.

1. Barack Obama was the 44th president of the United States.

2. The square root of a whole number is always a whole number.

3. The Green Bay Packers are the worst football team.

4. Why is this class so much fun?

5. This sentence is false.

25
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6. A group of crows is called a murder.

7. Everyone likes cats.
Now that we have a sense for what a proposition is, we’ll take old proposi-

tions and make new ones using logical connectives. In order to describe how
the connectives work, mathematicians define the truth values of the new propo-
sitions formally—that is, without regard to the content of the propositions
themselves—in terms of the possible combinations of truth values from the
constituent propositions. This gives us an abstract way of considering the truth
values of propositions.

Definition 3.1.3 Suppose P and Q are statements (e.g., like those in Activ-
ity 3.1.2). The negation of P , denoted ¬P and read "not P ", has the opposite
truth value of P and is defined by Table 3.1.4.
Table 3.1.4 The negation of P .

P ¬P

T F

F T

♦

Definition 3.1.5 The conjunction of P and Q, denoted P ∧ Q and read
“P and Q”, is true when both P and Q are true, and false otherwise. See
Table 3.1.6.Table 3.1.6 The conjunction of P and Q.

P Q P ∧Q

T T T

T F F

F T F

F F F

♦

Definition 3.1.7 The disjunction of P and Q, denoted P ∨Q and read “P
or Q”, is true when P is true, Q is true, or both are true, and false otherwise.
See Table 3.1.8.Table 3.1.8 The disjunction of P and Q.

P Q P ∨Q

T T T

T F T

F T T

F F F

♦

Activity 3.1.9 Meaningfully negate the following propositions (without just
saying "It is not the case that...").

1. e is a negative real number.

2. Iowa is the tenth largest state in the U.S.A. (by population).
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3. 17 is a prime number.
Exploration 3.1.10 Determine the truth values of the following propositions.

1. Our math class meets on Mondays and the capital of Iowa is Des Moines.

2. Our math class meets on Mondays and the capital of Minnesota is Min-
neapolis.

3. Our math class meets on Mondays or the capital of Minnesota is Min-
neapolis.

The last connective we’ll consider (for now) is implication.

Definition 3.1.11 Let P and Q be statements. The implication, "P implies
Q" (or "if P , then Q") is denoted P ⇒ Q, and is false only when P is true but
Q is false. See Table 3.1.12.
Table 3.1.12 The implication P ⇒ Q.

P Q P ⇒ Q

T T T

T F F

F T T

F F T

♦

Exploration 3.1.13 Determine the truth values of the following statements.
Identify which row of Table 3.1.12 you are in.

1. If −5 is a negative real number, then triangles have three sides.

2. If our math class meets today, then it is Wednesday.

3. If 9 > 5, then dogs do not have wings.

4. If 2 = 4, then dogs do have wings.
The formalization of mathematical logic ramps up a bit when we consider

conditional statements. It is important to remember that we define the truth
value of the proposition P ⇒ Q purely formally based on the structure of the
conditional statement and the truth values of the constituents P and Q. There
need not be a causal relationship between P and Q!

The last two rows of Table 3.1.12 are also worth a moment of our time.
They state that if the statement P 1 is false, then the implication P ⇒ Q is true.
Note that this is different than saying that Q2 is true. When the implication
P ⇒ Q is true because P is false, we usually say that P ⇒ Q is vacuously
true.

1Often called the antecedent.
2Often called the consequent.
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Activity 3.1.14 Suppose your professor promises that, if everyone has solved
a Rubik’s cube by Friday, then they will bring snacks to class3. Unfortunately,
a few students do not solve a Rubik’s cube by Friday, so the class does not get
snacks.

Decide the truth value of the following implication:
If everyone in the class solves a Rubik’s cube by Friday, the professor
will bring snacks to class.

Explain your thinking.
An important tool in our logical toolkit is one you likely employed in the

theorems you deduced from Axiom 2.2.2.

Exploration 3.1.15 Let P and Q be statements. The contrapositive of the
implication P ⇒ Q is the implication (¬Q)⇒ (¬P ). Complete Table 3.1.16. Is
the contrapositive equivalent to anything we’ve looked at thus far?
Table 3.1.16 The contrapositive of P ⇒ Q.

P Q ¬P ¬Q (¬Q)⇒ (¬P )

T T

T F

F T

F F

Activity 3.1.17 Write the contrapositives of the following statements. Be ready
to explain why the contrapositives are equivalent to the original implications.

1. If a kitten loves fish, then it is teachable.

2. If a kitten does not have a tail, then it will play with a gorilla.

3. If a kitten has green eyes, then it is not teachable.

4. If today is Wednesday, then we have math class.
We have now explored several ways of combining existing propositions into

larger propositions using logical connectives. When we use logic to write proofs,
we also employ tools known as rules of inference. They clearly describe what
steps we are allowed to take. There are many such rules; we will highlight two.

The way in which reasoning with implications is often done uses a rule of
inference known as modus ponens which runs roughly:

• If P , then Q.

• P ,

• Therefore, Q

A closely related rule of inference is known as modus tollens, and runs thusly:

• If P , then Q.

• Not Q,

• Therefore, not P .
3This is purely hypothetical.
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In this section, we explored the fundamentals of logical reasoning employed in
mathematics. Propositions are constructed out of elementary propositions and
logical connectives. The truth values of these propositions can be determined
purely formally in a consistent fashion. We then use laws of inference like modus
ponens or modus tollens to reason from true proposition to true proposition.

Exercises
1. Given an implication P ⇒ Q, the converse is the statement Q⇒ P . Find

the truth table for Q⇒ P ; is it the same as P ⇒ Q? Think of an example
of a specific statement P ⇒ Q that illustrates this.

2. A statement is called a tautology if is it always true. Similarly, a statement
is known as a contradiction if it is never true. Determine which of the
following, if any, are tautologies, and which are contradictions.
(a) P ∧ (¬P )

(b) P ∨ (¬P )

(c) P ⇒ (P ⇒ (P ⇒ (P ⇒ Q)))

(d) P ⇒ (¬P ⇒ (P ⇒ (¬P ⇒ Q)))

3.2 Formal Systems and Incompleteness

Motivating Questions.

In this section, we will explore the following questions.
1. What are formal systems?

2. What was Hilbert’s goal? How was it resolved?

3. How did Cantor describe infinite sets?

3.2.1 Formal Systems
We have seen thus far a way of formalizing logic so that we can think about
the truth of a statement purely syntactically (structurally) without regard for
the semantic meaning of the statements under consideration. In the late 19th
century, mathematicians developed what became known as formal systems,
consisting of axioms, which were strings of symbols, such as

∃B∀C, (C ∈ B ⇔ C ⊆ A),

along with a logical calculus, which govern the rules of inference that can be
used on the axioms to deduce new theorems.

Further, mathematicians had long assumed there were consistent founda-
tional axioms for their discipline. Newly discovered paradoxes challenged this
view.
Exploration 3.2.1 Russell’s Paradox. In a certain town lives a barber who
only cuts the hair of all people who do not cut their own hair. Who cuts the
barber’s hair?

Two main schools of mathematical philosophy sprung up in the wake of
these discoveries. The formalists argued that statements of mathematics and
logic are really just about the rules and consequences for manipulating symbols
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and strings of letters. That is, mathematics does not have a subject matter at
all--just empty symbols, which may be given an interpretation in particular
situations and thus have meaning.

The response came from the intuitionists1. Intuitionism is an approach
that considers mathematics to be purely the result of the constructive mental
activity of humans rather than the discovery of any principles which we can
reasonably claim exist in an objective reality. Thus, in some sense, mathematics
is up to whoever is doing the mathematics. To the intuitionists, the formalists
were reducing mathematics to a meaningless game with symbols.

Discussion 3.2.2 What strikes you about the formalist and intuitionist ap-
proaches to mathematics? Why?

In 1900, at the second International Congress of Mathematicians in Paris,
the esteemed mathematician David Hilbert posed 23 theretofore unanswered
problems in mathematics that he thought were important to guide the devel-
opment of mathematics in the 20th century. Most of Hilbert’s problems have
been solved, but three are unresolved, two are thought to be too vague to ever
get consensus on what a solution would look like, and one is the subject of
much debate.

In an attempt to resolve the issues raised by paradoxes like Russell’s Paradox,
Hilbert posed this problem, the second on the list:

But above all I wish to designate the following as the most important
among the numerous questions which can be asked with regard to
the axioms: To prove that they are not contradictory, that is, that
a definite number of logical steps based upon them can never lead
to contradictory results. . . .

That is, Hilbert wanted mathematicians to prove that the axioms on which
mathematics was founded did not lead to a contradiction. The resolution to
this problem is surprising, and to begin to explore its solution, we will turn to
the infinite.

3.2.2 Infinity and Incompleteness
In Subsection 3.2.1, we learned about the push from mathematicians in the
late 19th/early 20th century were trying to show that the axioms, the very
foundations on which mathematics was built, were both complete (the truth of
every sensible statement could be decided via deductions from the axioms) and
consistent (one could never deduce contradictory statements from the axioms).

For reasons which are hopefully clear, we’ll assume that the axioms are
consistent, that is, no contradictions will arise from them. (If contradictions
can arise, we are in trouble indeed.) But if the axioms are consistent, can it be
shown that they’re complete? To answer this question, we dive into the realm
of infinity.

Definition 3.2.3 Let S and T be sets, which we may think of as collections of
objects. We say that S and T have the same cardinality if there is a one-to-one
correspondence between the objects of S and those of T , i.e., if each element of
S can be paired up with one and only one unique element of T . In this case,
we write |S| = |T |. ♦

The idea that we can compare sizes of collections of objects by placing them
in one-to-one correspondence is known to very young children. However, they

1Of course, these are not the only two options for philosophies of mathematics; many
mathematicians talk about their work as if they are platonists2 at some level.

https://plato.stanford.edu/entries/platonism-mathematics/
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are mostly concerned with finite collections. Georg Cantor’s crucial insight in
studying the mathematics of the infinite was that one-to-one correspondences
could also be used to study infinite collections of numbers. This is widely (though
not universally) accepted today, but was the subject of much controversy in
the late 19th century when he introduced it.

Activity 3.2.4 Let S = {1, 2, 3, 4}, T = {�, ◦,F,4}, and U = {♦,♠,♣}.
1. Can you find a one-to-one correspondence between S and T? Describe it,

or explain why none exist.

2. Can you find a one-to-one correspondence between S and U? Describe it,
or explain why none exist.

3. Can you find a one-to-one correspondence between T and U? Describe it,
or explain why none exist.

In order to explore our undecidable statement, we need to set some notation.

Definition 3.2.5 We define the following sets of numbers.
1. The natural numbers are given by N = {1, 2, 3, . . .}.

2. The whole numbers are given by W = {0, 1, 2, 3, . . .}.

3. The integers are given by Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

4. The even integers are given by 2Z = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}.

5. The set of rational numbers is denoted by Q and consists of all fractions
a
b , where a, b are integers and b 6= 0.

6. The set of real numbers is denoted by R and is given by all positive and
negative infinite decimals (alternatively, every point on the number line).

♦

Activity 3.2.6 For the numbers that follow, identify all sets described in
Definition 3.2.5 they live in.

1. 7

2. −2

3. π

4. 4
3

5. 0
We now look for some one-to-one correspondences.

Exploration 3.2.7 For the following pairs of sets, determine whether a one-
to-one correspondence between the two sets exists. If it does, describe it. If it
does not, give a justification.

1. N and W

2. W and Z

3. Z and 2Z

4. N and 2Z

5. (Challenge) N and Q
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Exploration 3.2.8 Let’s explore the relationship between the cardinalities of N
and R by considering the interval [0, 1] consisting of all real numbers (points on
the number line) x satisfying 0 6 x 6 1. We will use the notation 0.a1a2a3 . . .
to denote the infinite decimal with tenths place value a1, hundredths a2, and
so on.

1. What is the relationship between |R| and |[0, 1]|?

2. Suppose we have a one-to-one correspondence between N and [0, 1]. Ex-
plain why this means that we can write

1↔ 0.d11d12d13 . . .

2↔ 0.d21d22d23 . . .

3↔ 0.d31d32d33 . . .

...

where dij is the jth decimal digit of the ith number on the list.

3. Define a real number M = 0.e1e2e3 . . . where ej = 2 if djj > 5 and ej = 7
if djj < 5. Suppose the first three numbers on the list above are

0.4548430426 . . .
0.4607677961 . . .
0.4702962689 . . .

What is M in this case?

4. In general, is it true that 0 6M 6 1?

5. Where is M on the list in Question 2?

6. What does your answer to the previous question suggest about the one-
to-one correspondence we wrote down in Question 2?

7. What does your answer to the previous question suggest about the rela-
tionship between |N| and |[0, 1]|? Between |N| and |R|?

Discussion 3.2.9 Given your responses to Exploration 3.2.7 and Explo-
ration 3.2.8, do you think there is a set S such that |S| > |N| and |S| < |R|?
Why or why not?

In the early 1930s, the Austrian mathematical logician Kurt Gödel revolution-
ized mathematical logic with his two incompleteness theorems. Informally,
first incompleteness theorem states that any sufficiently strong, consistent
formal system contains undecidable statements. That is, there are sensible
statements, such as the one raised in Discussion 3.2.9, which cannot be proved
from within the system. In that case, we may choose to adopt either the state-
ment or its negation as an additional axiom, and may do so without creating
any contradiction.

The question in Discussion 3.2.9 leads to just such a proposition, namely
that no such set S exists. This has been known as the continuum hypothesis.
It was first suggested by Cantor in 1878, and was one of Hilbert’s 23 problems.
Gödel himself proved in 1940 that its negation, i.e., that such a set S does exist,
is independent of the usual axioms of set theory. The mathematician Paul
Cohen proved in 1963 that the continuum hypothesis itself is independent of the
usual axioms of set theory, thus verifying that the hypothesis is undecidable.

In this section, we explored the idea of a formal system, which consists of
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axioms describing the use of certain symbols, and the rules of logical inference
used to make deductions from them. We were introduced to Hilbert’s second
problem, which challenged mathematicians to find consistent foundational
axioms for the entire discipline. In the 1930s, Kurt Gödel proved that no such
collection of axioms could exist; if math is consistent, then it will necessarily
contain statements whose truth values are independent of the axioms. An
example of such a statement is the continuum hypothesis, which asserts the
non-existence of a set S satisfying |N| < |S| < |R|.

3.2.3 Exercises
1. Suppose the list of real numbers described in Exploration 3.2.8 is

0.2684514351 . . .
0.2792165465 . . .
0.6549842123 . . .
0.2165489461 . . .
0.9961935468 . . .

Calculate the number M generated by Cantor’s diagonal argument.
2. How have mathematicians reacted to Gödel’s incompleteness theorems?

What consequences, if any, have there been for the work of discovering
new mathematics?

3. The existence of undecidable statements in mathematics, such as the
continuum hypothesis, may seem like an esoteric quirk without any real
consequences. However, there have been similar undecidable statements
discovered in related disciplines such as computer science and physics.
Find such a statement and, as best you can, describe it.



Part III

Power

34
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In the Introduction to this book, we cited Francis Su’s retiring MAA
presidential address, Mathematics for Human Flourishing. In his address,
Su argues that the practice of mathematics can cultivate virtues that help
humans live lives of fullness and flourishing. We’ve explored the ways in which
mathematics enables us to play and discern truth. We will next explore the
ways in which the power of mathematics can be brought to bear to help us
understand phenomena such as the current (as of this writing) coronavirus
pandemic.

As Su writes in his follow-up book [1], power "often sounds like a bad word,"
especially when applied to humans. Yet Su means power in the sense in which
Andy Crouch defines it in his book, Playing God: Redeeming the Gift of Power3:

Power is the ability to make something of the world...the ability to
participate in that stuff-making, sense-making process that is the
most distinctive thing that human beings do.

In this part of the text, we will focus particularly on the sense-making component
of power and ask: how do mathematical explorers make sense of the physical
world via mathematics? In Chapter 4, we will explore some increasingly
advanced discrete mathematical models, with the ultimate goal of understanding
a basic model of how infectious disease spreads through a population.

In Chapter 5, we will see how we can use the notion of a graph to model
connections. And in Chapter 6, we will use ancient ideas from number theory
to talk about how to reliably transmit information in the digital age.

3https://www.ivpress.com/playing-god

https://www.ivpress.com/playing-god


Chapter 4

Discrete Dynamical Systems

We begin this chapter by exploring the concept of a sequence. Our ultimate
goal is to use systems of related sequences to describe how certain physical
quantities change over time via discrete dynamical systems. Many situations can
be modeled via discrete dynamical systems, including the growth of populations
over time, predator-prey interactions, and the spread of a disease through a
population.

4.1 Sequences

Motivating Questions.

In this section, we will explore the following questions.
1. What is a sequence?

2. How can we use discrete sequences to describe real-world phenom-
ena?

3. What is the difference between a recursive definition and an explicit
formula for a discrete sequence?

We begin our study with an exploration of sequences.
Definition 4.1.1 A sequence is an ordered list of numbers, called terms. ♦

That’s it! Typically, we explore sequences which continue forever; these are
generally called infinite sequences. Such sequences are typically described
using a mathematical rule of some sort. Let’s look at an example.

Example 4.1.2 Joris is a collector of board games. His collection currently
has 37 games, and each year he budgets enough to acquire 8 new games. We’ll
use the notation Gt to describe how many games Joris has in year t, where we
consider G0 (that is, in year t = 0) to be the number of games he currently has.
Thus, G0 = 37. We would also expect G1 = 37 + 8 = 45, and G2 = 45 + 8 = 53.
We say that 37, 45, 53 . . . are the first three terms of the sequence.

This way of describing the number of games Joris has is known as a recursive
description, where each term depends on previous terms. That is, the recursive
description is given by the formula

G0 = 37, Gt+1 = Gt + 8, t > 1. (4.1.1)

�
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Since the sequence above only allows for whole number inputs, it cannot
estimate the number of board games Joris will have in 1.3 years, or π/4 years;
the system’s prediction changes by 8 as the elapsed time changes from 1 to 2, 5
to 6, and so on. This makes the sequence discrete.

We also note the recursive nature of the definition of the sequence in
Example 4.1.2. But there are other ways to describe sequences, and we turn to
those now.
Activity 4.1.3 A recursive definition is nice because it is reasonably intuitive
and fits with our usual understanding of how things change over time: they
start from where they are now, and then change a little every so often. But
perhaps we’d like to know how long it will take Joris to accumulate 500 games.

1. Clearly describe in 2-3 sentences a process for using the recursive definition
in Example 4.1.2 that would allow you to determine how many years it
would take Joris to accumulate 500 board games. Please do not use this
process to answer the question!

2. In 2-3 sentences, describe the disadvantage in the process you used in
Question 1 for finding how long it would take Joris to accumulate 500
games.

3. What we want is a explicit formula for Gt. That is, we want a formula
that allows us to plug in a value for t that will give us the number of
games Gt that Joris has in year t without having to know any of the
previous terms in the sequence. Find such a formula, and compute the
first three terms to convince your group that your formula produces the
same sequence as (4.1.1).

The sequence described in Activity 4.1.3 is known as a linear sequence. This
is because, like a line, it grows at a constant rate. Linear growth is extremely
useful because it is straightforward to understand and apply. However, it has
its shortcomings as well.

Activity 4.1.4 Lila is 6 years old, and is 43.5 inches tall. Her parents are told
to expect her to grow at approximately 2.25 inches/year. Let Ht, t > 0 denote
Lila’s height t years from now.

1. Predict Lila’s height when she turns 8.

2. Give a recursive description for Lila’s height.

3. Give an explicit formula for Lila’s height.

4. How tall will Lila be when she is 50? Give your answer in feet (remember:
there are 12 inches in a foot).

5. In 2-3 sentences, clearly articulate at least one shortcoming of extrapolat-
ing using linear models.

Conclusion. In this section, we explored the idea of a (discrete) sequence.
A sequence is just a list of numbers, and we considered sequences which are
(in theory, at least) infinite. We saw two ways of describing a sequence other
than just listing the numbers in order: recursively, and with an explicit formula.
The recursive definition fits with our intuition about how quantities change
over time, but it can be tedious to calculate terms that appear late in the
sequence, as you need to calculate every term leading up to the one in which
you’re interested. Explicit formulas, on the other hand, give us shortcuts to
calculating any term we want, but can often be hard to find and can obscure
the actual behavior of the sequence.
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Next time, we’ll take a look at the ways in which we can combine multiple
sequences to create systems. These systems can be used to describe the behavior
of real-world interactions. In particular, we’ll explore a basic predator-prey
model (involving two populations, the predators and the prey), and then a
system of three sequences that describes the basic dynamics of the spread of a
disease.

Exercises
1. Find an explicit formula for each of the following.

(a) 2, 5, 8, 11, 14, . . .

(b) 50, 43, 36, 29, . . .
2. The first three terms in a sequence are listed below as numbers of dots.

Determine a recursive description for the sequence. If possible, determine
an explicit formula for the sequence.

Figure 4.1.5
3. The first four terms in a sequence are listed below as numbers of dots.

Determine a recursive description for the sequence. If possible, determine
an explicit formula for the sequence.

Figure 4.1.6

4.2 Discrete Dynamical Systems

Motivating Questions.

In this section, we will explore the following questions.
1. What is a discrete dynamical system? How do they relate to

sequences?

2. How can we use discrete dynamical systems to describe real-world
phenomena like predator-prey interactions, or the spread of a
disease in a population?

In Section 4.1, we introduced the notion of a sequence. In this section, we
will focus on situations in which our sequences represent a quantity changing
over discrete, consistent periods of time. We will also consider systems of
sequences: two or more interrelated sequences which describe the behavior of
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multiple changing quantities all at once. Before we dive into such systems, we
consider another type of growth.

4.2.1 Exponential Growth
Populations of people and animals do not grow linearly. Instead, they usually
grow by a percentage of the whatever the current population is. So, if that annual
percentage is, say, 10%, and the current population of a group of fish in a pond is
1000, this model predicts a population of 1000+10% ·1000 = 1000+100 = 1100
fish for next year.

In symbols, if Pt represents the number of fish t years from now, then
P0 = 1000, P1 = P0 + 0.1 · P0 = (1 + 0.1)P0 = 1.1P0. The number 0.1 is called
the growth rate, r, and the number 1.1 is the growth multiplier.

In what follows, I will occasionally provide Sage cells in which you can do
basic computations (and in which I may help get you started). To see how this
works, click "Evaluate" in the Sage cell below to see what happens.

P_0 = 1000
P_1 = 1.1* P_0
P_1

Exploration 4.2.1 Consider a population of 1000 fish growing at 10% per
year.

1. Give a formula for P2 in terms of P1, and then a formula for P3 in terms
of P2.

2. Using your answer to the previous part as a guide, give a formula for Pt

in terms of Pt−1.

3. Again, using your answer to Question 1 and the work in the paragraph
preceding this activity, give a formula for P2 in terms of P0. Use this
formula to find P3 in terms of P0. Why might these formulas be more
useful than the ones you found in Question 1?

4. State your best guess for a formula for Pt in terms of P0. Use your formula
to estimate the number of fish in the pond after 10, 20, and 50 years.
What is this model missing?

5. Press “Evaluate” below to confirm your response to Question 4. What
happens if you increase or decrease the growth rate, r? Try it, and
reevaluate.

P_0 = 1000
r = 0.1
P(t) = (1+r)^t*P_0
tt = range (50)
PP = [P(t) for t in tt]
tP = list(zip(tt, PP))
P_dots = points(tP, color='red')
P_dots

The type of growth explored in Exploration 4.2.1 called exponential,
as the growth comes from taking the growth multiplier to larger and larger
powers (exponents). We saw the danger of extrapolation with linear models in
Activity 4.1.4, and we note a similar danger in extrapolating with exponential
models. If nothing else, it’s likely that the pond cannot hold 100,000 fish.
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Thankfully, we can modify our exponential growth model by introducing an
upper limit for what the habitat can hold.

Exploration 4.2.2 Suppose our pond can hold 5000 fish. This is known as the
carrying capacity, and we’ll denote it with the letter K. We’ll now let r = 0.1
be our maximum growth rate, but we’ll let it slowly reduce as the population
grows.

1. As Pt increases and gets closer and closer to K over time, what happens
to the ratio Pt/K? What number does it get close to?

2. Thus, what happens to the expression 1 − Pt

K as Pt increases and gets
closer and closer to K?

3. Ecologically speaking, what does it mean for Pt to get closer and closer
to K?

4. As the phenomena described in Question 3 occurs, what do we expect the
graph of Pt over time to look like?

5. Test your suspicion by evaluating the Sage code below.

P_0 =1000
r = 0.1
K = 5000
maxterm = 100
P(t)= K/(1+(K-P_0)/P_0*e^(-r*t))
tt = range(maxterm)
PP = [P(t) for t in tt]
tP = list(zip(tt, PP))
P_dots = points(tP, color='red')
P_dots

4.2.2 A discrete predator-prey model
We now consider systems of discrete sequences, called discrete dynamical
systems.
Definition 4.2.3 A dynamical system refers to any fixed mathematical rule
which describes how a system changes over time. A discrete dynamical system
changes at fixed intervals in time (e.g., each hour), and does not change between
the fixed points in time (e.g., a system that changes each hour will view the
changing quantity as static between the hours of 1:00pm and 2:00pm). ♦

There are two main types of dynamical systems: discrete and continuous.
The study of continuous dynamical systems is the domain of calculus and its
related disciplines (e.g., differential equations). Continuous dynamical systems
treat time as infinitely divisible; discrete dynamical systems do not. Typically,
a dynamical system involves multiple related quantities that change over time.

We begin with a classic predator-prey model adapted from the Feedback
Systems Wiki1 at Caltech. For historical reasons, we let Lt be the size of a
population of Canadian lynxes in year t and Ht be the size of a population of
snowshoe hares, the lynx’s primary prey.

Definition 4.2.4 Let H0 be the initial population of hares, and L0 the initial
population of lynxes. For t > 1, the discrete Lotka-Volterra model for the

1https://www.cds.caltech.edu/~murray/amwiki/index.php/Predator_prey

https://www.cds.caltech.edu/~murray/amwiki/index.php/Predator_prey
https://www.cds.caltech.edu/~murray/amwiki/index.php/Predator_prey
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lynx/hare population is given by:

Ht+1 = Ht + b(u)Ht − aLtHt

Lt+1 = Lt + cLtHt − dLt,

where b is the hare birth rate per unit time as a function of the food supply u,
d is the lynx mortality rate, and a and c are interaction coefficients. ♦

Note the interrelationship between the two equations: the formula for
calculating Ht+1 requires knowing not only Ht, but also Lt. This makes
sense! These populations interact, so the presence (or absence) of lynx should
reasonably affect the hare population. Let’s further analyze this model.

Exploration 4.2.5 Consider the predator/prey model introduced in Defini-
tion 4.2.4.

1. What do the terms Lt and Ht represent?

2. Which term in the model represents an increase in the hare population?
Which term represents a decrease in the hare population? Explain how
you know.

3. Which term in the model represents an increase in the lynx population?
Which term represents a decrease in the lynx population? Explain how
you know.

4. What does the product LtHt represent? (The multiplication principle2

may be helpful here; also consider what a is described to be.)

5. What simplifying assumptions does this model make about how the
populations increase and decrease?

Activity 4.2.6 Let’s start by assuming that H0 = 20 and L0 = 35. That is, we
begin with 20 hares and 35 lynxes. Let’s further assume that a = c = 0.001167,
b = 0.05, and d = 0.0583 (parameters scaled by 12 months).

1. Compute H1, H2, L1, and L2. What seems to be happening to the two
populations? Confirm using the Sage cell below, which will display the
first ten months’ worth of predictions, or explore this spreadsheet3. Note
that the hare population is given by the blue dots and the lynx population
by the red.

2https://en.wikipedia.org/wiki/Rule_of_product

https://en.wikipedia.org/wiki/Rule_of_product
https://docs.google.com/spreadsheets/d/1sFOHJ-LNA39Ydj_GDg69XhtNwWVtpWNweBT5IBzjJGo/edit?usp=sharing
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H_0 = 10 # This is the initial hare population
L_0 = 10 # This is the initial lynx population
a = 0.014 # This represents the predation rate
b=0.6 # Growth rate of hares
c=a # This represents the predation rate
d=0.7 # death rate of lynx
nperiod = 12 # number of time periods in a year
def H(n):

if n==0:
return H_0

else:
return H(n-1) +

(b*H(n-1)-a*L(n-1)*H(n-1))/nperiod

def L(n):
if n==0:

return L_0
else:

return L(n-1) +
c*L(n-1)*H(n-1) -(d*L(n-1))/nperiod

time =10
nn=range(time)
HH = [H(n) for n in nn]
LL = [L(n) for n in nn]
nH = list(zip(nn, HH))
nL = list(zip(nn, LL))
H_dots = points(nH, color='blue')
L_dots = points(nL, color='red')
p = H_dots + L_dots
p

2. The interaction coefficients translate to a decrease in the lynx population
and an increase in the hare population. What do you expect to happen if
we increase it from 0.014 to 0.05?

3. Test your suspicion using the Sage cell below, or this spreadsheet4.

https://docs.google.com/spreadsheets/d/1sFOHJ-LNA39Ydj_GDg69XhtNwWVtpWNweBT5IBzjJGo/edit?usp=sharing
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H_0 = 10 # This is the initial hare population
L_0 = 10 # This is the initial lynx population
a = 0.05 # This represents the predation rate
b=0.6 # Growth rate of hares
c=a # This represents the predation rate
d=0.7 # death rate of lynx
nperiod =12
def H(n):

if n==0:
return H_0

else:
return H(n-1) +

(b*H(n-1)-a*L(n-1)*H(n-1))/nperiod

def L(n):
if n==0:

return L_0
else:

return L(n-1) +
(c*L(n-1)*H(n-1)-d*L(n-1))/nperiod

time =10
nn=range(time)
HH = [H(n) for n in nn]
LL = [L(n) for n in nn]
nH = list(zip(nn, HH))
nL = list(zip(nn, LL))
H_dots = points(nH, color='blue')
L_dots = points(nL, color='red')
p = H_dots + L_dots
p

4. Qualitatively describe the dynamics displayed in the Sage output in the
previous question.

One might reasonably wonder how such a simple model does in making
predictions about the long-term dynamics of these populations. The answer
is: surprisingly well! In Figure 4.2.7, observe the actual collected data on hare
and lynx populations over 90 years, from 1845 to 1935. In Figure 4.2.8, we
see dynamics predicted by the model. Note the same cyclical patterns of an
increase in the hare population followed by an increase in the lynx population,
which in turn causes a decrease in the hare population, etc.

Figure 4.2.7 Data on hare and lynx populations over time. (Source5)

3https://docs.google.com/spreadsheets/d/1sFOHJ-LNA39Ydj_
GDg69XhtNwWVtpWNweBT5IBzjJGo/edit?usp=sharing

4https://docs.google.com/spreadsheets/d/1sFOHJ-LNA39Ydj_
GDg69XhtNwWVtpWNweBT5IBzjJGo/edit?usp=sharing

5https://www.cds.caltech.edu/~murray/amwiki/index.php/Predator_prey

https://www.cds.caltech.edu/~murray/amwiki/index.php/Predator_prey
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Figure 4.2.8 The predicted dynamics of hare and lynx populations over time.
(Source6)

To be clear, the purpose of the model is not to make absolutely certain
predictions about the precise numbers of hares and lynxes present in the
Canadian wilderness. Instead, we want to understand the broad dynamics of
how the populations change relative to one another. Mathematical ecologists
can then use these models to understand how small changes in the parameters
(say, an increase in the rate of predation) affect the broader dynamics of the
ecological system.

4.2.3 The discrete SIR epidemiological model
We now arrive at the main goal of this chapter: the description of a basic
mathematical model for the spread of an infectious disease. We’ll first present
the model itself and examine its features and assumptions. As was the case
with the predator-prey model, we’ll see that while it does make simplifying
assumptions, it still allows us to analyze the broader dynamics of the disease
transmission. We’ll then look at ways of reducing the rate of infection, including
the so-called "flattening the curve" method.

We begin with the model. It is known as a compartmental model, as it
divides the population into compartments and assumes that every individual
in the same compartment has the same characteristics (at least as far as the
transmission of the disease is concerned). We’ll look at the simplest such model,
the discrete SIR model. Many more complex models are built on the SIR
model.
Definition 4.2.9 Consider a population of N people through which a disease is
spreading. For some discrete time t > 0, let St denote the number of individuals
susceptible to the disease, It the number of individuals infected with the disease,
and Rt the number of individuals who have recovered from the disease. We
assume that that people move through the compartments as follows:

S → I → R. (4.2.1)

For t > 1, the model is given by the following equations.

N = St + It +Rt

St+1 = St − bStIt

It+1 = It + bStIt − aIt

Rt+1 = Rt + aIt.

The constant a is known as the recovery rate parameter, which roughly describes
how fast someone moves from the infected compartment to the recovered
compartment. The constant b is known as the infection rate, and roughly
describes how fast someone moves from the susceptible compartment to the
infected compartment. ♦

Let’s explore the equations.
6https://www.cds.caltech.edu/~murray/amwiki/index.php/Predator_prey

https://www.cds.caltech.edu/~murray/amwiki/index.php/Predator_prey
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Exploration 4.2.10
1. What does (4.2.1) mean? What assumptions does this make? How does

it simplify our analysis?

2. What does the first equation in the set of four mean? What assumptions
does it make about the population?

3. The second equation describes how the susceptible population changes
over time. It contains the term −bStIt. Based on our work above with a
predator-prey model and the definition of b, what epidemiological event
is this term describing?

4. Explain why it makes sense that we add bStIt in the equation defining
It+1.

5. What does the term −aIt mean in the equation for It+1? Why does it
make sense to add aIt in the equation for Rt+1?

6. Note that there are no terms being subtracted in the equation for Rt+1.
What assumption does this tell us that the model is making?

Activity 4.2.11 Let’s see what happens when we plug in some numbers.
Assume that N = 10, 000, R0 = 0, and I0 = 50.

1. Why does it make sense that we have R0 = 0 (assuming we have a new
disease entering a population).

2. What is S0?

3. Let’s assume that a = 0.1 and b = 0.0001. Compute S1, I1, and R1.

4. Use your answer to the previous part to compute S2, I2, and R2.

5. Now check your work using this spreadsheet7 (download a copy to your
device and edit it there).

Investigation 4.2.12 In this and the following activity, we’ll use the spreadsheet
found here8. Download the file and play around with the numbers at the top of
the sheet to change some of the features; e.g., how does increasing/decreasing
the number of initial infected individuals change the shape of the curves?
What do you notice? What do you wonder? Give at least 2-3 observations or
questions.

The COVID-19 pandemic introduced many people to a quantity called r0.

This is known as the basic reproduction number, and is the expected
number of new infections directly generated by a single case. So, if Sam were to
get COVID-19, r0 would be the expected number of people Sam would directly
infect. We would then expect each of them to infect another r0 people, and so
on.

Generally, if r0 > 1, we expect the disease to spread. If r0 < 1, we expect it
to die out.

The next activity explores the ways in which varying r0 impacts new cases
of the disease caused both directly and indirectly by a single person.

7https://docs.google.com/spreadsheets/d/153LO2O21_
TwEYyODq2Km90oRrilLEpfYmgb8w3AJSQo/edit?usp=sharing

8https://docs.google.com/spreadsheets/d/153LO2O21_
TwEYyODq2Km90oRrilLEpfYmgb8w3AJSQo/edit?usp=sharing

https://docs.google.com/spreadsheets/d/153LO2O21_TwEYyODq2Km90oRrilLEpfYmgb8w3AJSQo/edit?usp=sharing
https://docs.google.com/spreadsheets/d/153LO2O21_TwEYyODq2Km90oRrilLEpfYmgb8w3AJSQo/edit?usp=sharing
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Activity 4.2.13 In this activity, we assume different values for r0. However,
we will make two assumptions that don’t change.

First, assume that all direct infections are done within a 5-day period.
Second, assume that that those infected don’t infect others until the next five
day period.

Let Ct be the number of cases I’ve caused after t five-day periods. Assume
C0 = 1 (me).

1. Explain why C1 = r0C0 = r0.

2. Explain why C2 = C1 + r0C1 = r0 + r2
0.

3. After 30 days, six five-day periods will have passed. Explain why

C6 = r0 + r2
0 + r3

0 + · · ·+ r6
0.

4. Our SIR model approximates r0 by the formula

r0 ≈
bN

a
. (4.2.2)

Using that formula, what is the approximate r0 for the situation described
in Activity 4.2.11?

5. Given that value of r0, use the Sage cell below (replacing the ? with the
value you found) to estimate how many cases Sam directly or indirectly
causes over a 30-day period.

6. The practice of social distancing9 is intended to reduce r0. Assume that
strict social distancing is observed, and this reduces r0 to approximately
1.25 (one direct infection fewer). Now how many cases does Sam cause
over the course of a 30-day period?

7. As the COVID-19 situation is ongoing, estimates for r0 vary significantly
(and are variant-dependent). One study from February 202010 found an
average r0 of 3.28. If that is the true number, approximately how many
cases will a typical infected person be responsible for over the course of a
month? Use the Sage cell to determine your answer.

8. Other studies suggest that, in the absence of any social interventions, the
original variant of COVID-19 has r0 ≈ 2.38. In that case, how many cases
would an infected person be responsible for over the course of a month?

9. The Delta variant of COVID-19 has r0 ≈ 5.1. If I am infected with the
Delta variant, approximately how many new cases will I cause within a
month?

10. The Omicron variant of COVID-19 has an estimated r0 ≈ 10 (note that
this is being written in February 2022, just as the first major Omicron
wave is subsiding; it should therefore be treated as preliminary). If Sam
is infected with the Omicron variant, approximately how many new cases
will he cause within a month?

r_0 = ?
r_0 + r_0^2 + r_0^3 + r_0^4 + r_0^5 + r_0^6

9https://en.wikipedia.org/wiki/Social_distancing
10https://academic.oup.com/jtm/article/27/2/taaa021/5735319

https://en.wikipedia.org/wiki/Social_distancing
https://academic.oup.com/jtm/article/27/2/taaa021/5735319
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For our last activity, we’ll explore how reducing r0 “flattens” the curve of
infected people at time t, It. There are two main advantages of a flattened
infected curve. First, this often corresponds to fewer infected people overall.
Second, the lack of a spike in infected persons makes it easier for the healthcare
system to effectively treat those who are infected (not to mention anyone with
other medical concerns).

Exploration 4.2.14 One last time, consider the values for the variables we
used in Activity 4.2.11; for reference, this was S0 = 10000, I0 = 50, R0 = 0,
a = 0.1, and b = 0.0001. We’ll again use the Google sheet11 to answer these
questions.

1. What is r0? (Recall (4.2.2) from Question 4 of Activity 4.2.13.)

2. This value is pretty high (though it is approximately the r0 of diseases like
measles and chicken pox!), but is convenient for our purposes. Nonetheless,
we can still explore the ways in which changes in r0 affect the shape of the
curves; our qualitative observations will still apply to real-world situations
like the current coronavirus pandemic.
Recall that r0 ≈ bN

a and assume our population size N = 10000 and
recovery rate a = 0.1 are constant. Compute the three values of r0 that
result from infection rates of b = 0.00005, 0.0001, and 0.0002. In turn,
plug these values into the Google sheet12 and comment on the shape of
the infection curve: how tall is the spike of infected individuals, and at
what time t is it at its highest point?

3. Similarly, assuming N = 10000 and b = 0.0001 are constant, compute the
values of r0 that result from a = 0.05, 0.1, and 0.2. In turn, plug these
values into the Google sheet13 and comment on the shape of the (green)
infection curve: how tall is the spike of infected individuals, and at what
time t is it at its highest point?

In this section, we first saw exponential growth, and discussed the strengths and
weaknesses of using exponential growth to model a changing population. We
also explored a basic predator-prey model, and noted that though the specific
predictions made by the model may not be completely accurate, it does a good
job of describing the broader dynamics and trends in the populations of the
predator and prey.

We concluded by exploring a discrete version of the SIR epedimiological
model, which is useful for describing the spread of a disease through a population.
We used the model to test the effect of various interventions and observed how
slowing the spread of the disease “flattens the curve” of infected individuals.

4.2.4 Exercises
1. The predator-prey model described in Definition 4.2.4 is known as a discrete

Lotka-Volterra model. Do some research online to determine who Lotka
and Volterra were, and what questions they were interested in. Write one
or two paragraphs describing your findings.

11https://drive.google.com/file/d/1xSJ6KM8x9HVdo9-P4QoUOoSmmfpKmmIQ/view?
usp=sharing

12https://drive.google.com/file/d/1xSJ6KM8x9HVdo9-P4QoUOoSmmfpKmmIQ/view?
usp=sharing

13https://drive.google.com/file/d/1xSJ6KM8x9HVdo9-P4QoUOoSmmfpKmmIQ/view?
usp=sharing

https://drive.google.com/file/d/1xSJ6KM8x9HVdo9-P4QoUOoSmmfpKmmIQ/view?usp=sharing
https://drive.google.com/file/d/1xSJ6KM8x9HVdo9-P4QoUOoSmmfpKmmIQ/view?usp=sharing
https://drive.google.com/file/d/1xSJ6KM8x9HVdo9-P4QoUOoSmmfpKmmIQ/view?usp=sharing
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2. An advantage of the SIR model explored in this section is its simplicity:
the population is split into only three compartments. However, through
the use of more compartments it is possible to identify subtler dynamics
at work; find such a model, such as an SEIR model, describe the choices it
makes, and what is gained by the additional complexity.



Chapter 5

Graphs

In this chapter, we’ll explore the mathematics of connection via an object called
a graph. Computers are particularly well-suited for the study of graphs, and
they are helpful for describing many aspects of modern life, including computer
networks, social media networks, logistics networks, and the like.

5.1 Intro to Graph Theory

Motivating Questions.

In this section, we will explore the following questions.
1. What is a graph? What are some of the basic ideas and terminology

used to describe graphs?

2. What features of the world can graphs help us study?

5.1.1 The Bridges of Konigsberg
The study of graph theory often traces its roots to a historical problem known
as the Seven Bridges of Königsberg, and its solution by the mathematician
Leonhard Euler.
Investigation 5.1.1 In the town of Königsberg in Prussia, there was a river
containing two islands. The islands were connected to the banks of the river by
seven bridges as seen in Figure 5.1.2. On their days off, townspeople would play
a little game with themselves as they walked over the bridges: was it possible
to plan a walk so that you cross each bridge once and only once?

Figure 5.1.2 The seven bridges (credit: Oscar Levin)

5.1.2 Background and terminology
You’ve almost certainly encountered the word graph in a math class.

49
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Discussion 5.1.3 What is meant by the word graph in a mathematical context?
Give as many answers as you can, and be as clear and precise as possible.

A relatively new (by mathematical standards) use of the word graph in
mathematics involves the notion of connection. It is this notion that we will be
exploring in this unit. We present a formal definition below.

Definition 5.1.4 A graph, G, is a collection of vertices (or nodes), V , and
a collection of edges, E, which are pairs of vertices. We denote the graph as
G(V,E). ♦

This relatively simple, short definition nonetheless has deep consequences.
We’ll see an example below, but note that the primary defining features of a
graph G are some objects (vertices) and the connections between (some of) the
objects (the edges). If a vertex v is connected to another vertex u by an edge
vu, we say uv is incident to v, and we say u is adjacent to v and is in the
neighborhood of v.

Example 5.1.5 As a straightforward initial example, consider the graphG(V,E)
where V = {a, b, c, d} and E = {ab, ac, bd}. This graph has four vertices, and
three edges. One representation (drawing) of it is given in Figure 5.1.6.

A

B C

D

Figure 5.1.6 One drawing of G.
As stated above, the most important feature of a graph is the connections

it describes. Thus, we would say the graph in Figure 5.1.7 also represents the
graph G from Figure 5.1.6.

A

B D

C

Figure 5.1.7 Another drawing of G.
�

Activity 5.1.8 In this activity, your job is to invent a graph G with the
following properties. Draw it and be ready to share it. Then explain why your
example meets the given criteria (e.g., for Question 4, which vertex has at least
three neighbors?).

1. Your graph should have six vertices

2. Your graph should have ten edges
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3. There should be at least one pair of vertices between which you cannot
trace a path of edges

4. One vertex should should have at least three others in its neighborhood
Exploration 5.1.9 We saw in the last unit that we could model changing
quantities over time using discrete dynamical systems. Graphs, on the other
hand, describe connections between objects. Brainstorm or research at least
two or three complex, real-world situations which graphs might be helpful to
model. That is, can you think of at least two or three situations in which one of
the fundamental properties is connection? Briefly describe each situation in 3-4
sentences, and make clear how graphs can be used to describe these situations.
If you find examples of such graphs, be ready to share.

In order to discuss the nuances of the connections modeled by a graph, we
need a bit more terminology.

Definition 5.1.10 Let G(V,E) be a graph. A vertex v in V is isolated if it
has no neighbors. The number of edges incident to a vertex v is known as the
degree of v, denoted deg(v). If between every pair of vertices in V there is a
path of edges, we say G is connected. Otherwise, we say G is not connected.
Each of the largest possible connected pieces of G is known as a component
of G. ♦

Exploration 5.1.11 For this exploration, we will consider the graph G(V,E)
in Figure 5.1.12.

A

B

C D E

F G

H I

J

Figure 5.1.12 A graph G.

1. Is G connected? How many components does it have?

2. Does G have any isolated vertices? If so, what are their degrees?

3. What is the largest degree of a vertex in G? Which vertex/vertices have
that degree?

4. Suppose that G represents a social network; that is, the vertices represent
people, and the edges represent friendship. Who are e’s friends?

5. Still viewing G as the model of a network of friends, which pair of people
do you think are more likely to become friends next: a and b, or c and e?
Why?

6. Still viewing G as the model of a network of friends, which pair of people
do you think are more likely to become friends next: a and b, or c and h?
Why?

In this section, we introduced the idea of a graph as essentially a network:
a collection of vertices connected by edges. We thought about the types of
situations that could be described with a graph, and learned some terminology
that will help us ask and answer additional questions about graphs in future
sections.
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5.1.3 Exercises
1. Do some internet research about (Kevin) Bacon numbers1. What are

they? How could you use a graph to model the situation described by a
Bacon number? Then look up two or three people and report their Bacon
numbers.

2. Draw two different representations of the graph with vertices V = {a, b, c, d, e, f}
and edges E = {ab, ad, df, ef, cd, be, af}.

3. Do an internet search for “social graph”. What is it? How has it been
used, and by whom?

5.2 Planar Graphs and Graph Coloring

Motivating Questions.

In this section, we will explore the following questions.
1. What does it mean for a graph to be planar? Are all graphs

planar?

2. What does it mean to color a graph’s vertices? How can vertex
coloring be used to solve applied problems?

3. What does the four color theorem say?

5.2.1 Planar Graphs
Exploration 5.2.1 Suppose there are three houses, each needing to be con-
nected to three utilities: water, natural gas, and electricity, as pictured in
Figure 5.2.2. For safety reasons, we wish to draw the lines connecting the
utilities to the houses so that they do not cross. Can you find an arrangement
of utility lines that do not cross?

Figure 5.2.2 Three utilities and three houses.
Exploration 5.2.3 Suppose there are five train stations, each wishing to be
directly connected to the other four without having to pass underneath or over
another rail line (no bridges or tunnels). However, the rail lines do not need to
be straight, nor do they need to take the shortest path. Can you find a way to
draw them so that they do not cross?

1https://www.oracleofbacon.org

https://www.oracleofbacon.org
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Figure 5.2.4 Five train stations.
The two graphs you drew above are famous and have special names: the first

is the complete bipartite graph K3,3, because you can group the vertices
into two parts (“bi-partite”) such that every vertex from one group is connected
to every vertex in the other. The second is called the complete graph on five
vertices, K5, because it contains all possible edges connecting the vertices.

Activity 5.2.5 Find at least two different drawings each of the graphs K3,3
and K5. If possible, try to find drawings of the graphs which solve the original
problems. Note that your different drawings still describe the same connections.
Definition 5.2.6 A graph is called planar if it is possible to draw the graph
in such a way that none of the edges cross. ♦

Exploration 5.2.7 Consider the graphs below. For each graph, determine
whether it is planar. If so, draw it so none of the edges cross. If not, explain
why not.

Figure 5.2.8
Thus, the utilities and train station problems can be stated as follows: Are

K3,3 or K5 planar? The answer comes from a theorem of Kuratowski.

Theorem 5.2.9 A graph is planar if and only if it does not contain a copy of
K3,3 or K5, or a subdivision of K3,3 or K5.

Exploration 5.2.10 To see what we mean by “subdivision”, is the following
graph planar?

A B C

D E F

G

Figure 5.2.11
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5.2.2 Graph Coloring
Another application of planar graphs arises when deciding how to color a map.
A useful coloring must not color states that share a common border (that is, a
part of their boundary) with the same color (otherwise it’s difficult to tell where
one starts and another begins!). However, an efficient mapmaker might wonder
how many colors are needed to color any world map so that no countries which
share a border are given the same color.

Exploration 5.2.12 Consider the blank map of the USA displayed in Fig-
ure 5.2.13. How many different colors are needed in order to color the states
so that no states that share a border are given the same color? How could we
model this problem with a graph?

Figure 5.2.13
Theorem 5.2.14 Four Color Theorem. Four colors suffice to color any map
such that any two countries which share a part of a border are given different
colors.

The proof was very controversial, as it involves the use of computers to
check thousands of cases. The proof is generally accepted now, however.

We can use graphs to model maps. The graph in Figure 5.2.16 models the
borders found in the generic map shown in Figure 5.2.15.

Figure 5.2.15



CHAPTER 5. GRAPHS 55

A

B

C

D

E

F G H

I J

Figure 5.2.16
Question 5.2.17 Why must the graph associated to a map be planar? Why
must it have no loops or multiple edges? �

Lest you think graph coloring is just a fun game, consider the following
version of a very real situation.

Activity 5.2.18 Suppose your friendly local university is looking to schedule its
final exams. Obviously, it can’t schedule them so that someone in two different
classes is scheduled for an exam at the same time. But how many times are
actually required?

1. First, make up a list of at least 5 courses, and 10 students who are in some
of these courses. Ensure that each course shares at least one student in
common with at least two other courses (this is just to make the problem
sufficiently interesting).

2. Create a graph whose vertices are the courses. Draw an edge between any
pair of courses for which a student is enrolled in both courses.

3. How many colors are required to color the vertices so that no pair of
adjacent vertices gets the same color? Can the answer be more than 4?
Why or why not?

4. How many final exam timeslots are required?

In this section, we explored notions of planarity and graph coloring. Planar
graphs are useful when modeling connections formed by, e.g., the boundaries
on a map. Graph coloring is a helpful concept when needing to partition our
vertex sets into unrelated parts (given by the colors).

5.2.3 Exercises
1. Determine the smallest number of colors required to color the graph in

Figure 5.2.16.
2. As we discussed above, the utilities problem is not solvable on a flat sheet

of paper (i.e., in the plane). Is it solvable on another surface (e.g., a sphere?
maybe something else?). Draw some examples to see if you can find a
solution. If you run stuck, do some research online to see if you can find a
solution.

3. A cycle on n vertices, denoted Cn, is the graph with vertex set V =
{v1, v2, v3, . . . , vn} and edge set E = {v1v2, v2v3, . . . , vn−1vn, vnv1}. Draw
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examples of Cn for n = 3, 4, 5, 6, and then calculate the fewest number
of colors needed to color the vertices of a cycle for those graphs. Make a
conjecture about what might be true in general and be ready to explain
your thinking.

5.3 Trees

Motivating Questions.

In this section, we will explore the following questions.
1. What are paths and cycles?

2. What is a tree?

3. How are trees useful?

Two fundamental questions in the analysis of graphs are: given two vertices,
is there a path between them? And if so, how can we find the shortest possible
path? Let’s consider the second question first.

Notice in the graph in Figure 5.1.12 that there are several paths between,
say, A and F . There is a path spanning two edges: A → C → F . There is
also a path spanning four edges: A → C → D → E → F . In general, by the
distance between two vertices, we mean a path consisting of the fewest edges
possible, so the distance between A and F is 1.

Activity 5.3.1 Consider the graph in Figure 5.3.2.
A B C D

E

F G H I

J K

L M N O

Figure 5.3.2 A graph.

1. Find three paths from vertex L to vertex E.

2. Determine the distance from vertex B to vertex N . How many paths of
this distance can you find?

Returning to the first question above, if the graph is connected, the answer
is obviously yes. So, given a graph G(V,E), we are often interested in removing
superfluous edges in a systematic way to arrive at a smallest (which will be
made precise shortly) connected subgraph T (V,E′).

Definition 5.3.3 A cycle on n vertices v1, v2, . . . , vn is the graph with n+ 1
edges v1v2, v2v3, . . . , vn−1vn, vnv1. We denote such a cycle by Cn. That is,
a cycle consists of a path v1 → v2 → v3 → . . . → vn → v1, where the only
repeated vertex is the first/last one. ♦

Example 5.3.4



CHAPTER 5. GRAPHS 57

images/video-1.jpg

YouTube: https://www.youtube.com/watch?v=iu-Zm4xBYw4

�
One of the major questions in theoretical graph theory is: given a graph G,

is there an algorithm that determines whether G contains any cycles? There
are several such algorithms, and they are relatively efficient. A related question
is: given a graph G, is there an efficient algorithm which can produce a cycle
that visits each vertex exactly once? The answer to this question is currently
unknown (as of April 2020), but an active area of research.

Our focus for the rest of this section is graphs that do not contain any
cycles.

Definition 5.3.5 A connected graph T (V,E) that does not contain any cycles
is known as a tree.

♦

Example 5.3.6

images/video-2.jpg

YouTube: https://www.youtube.com/watch?v=2Qy8fugua80

�
The description given in Definition 5.3.5 is pretty close to what we want.

Given a graph G(V,E), we want a tree T (V,E′) such that every vertex of G
is also a vertex of T , and every edge of T to be an edge of G. Such a tree is
known as a spanning tree for G.

Exploration 5.3.7 Determine whether the given graph is a tree. Justify your
answer by making explicit reference to Definition 5.3.5.

1.
A B C

DEF

Figure 5.3.8 The graph for Question 1. Is it a tree, or no?

https://www.youtube.com/watch?v=iu-Zm4xBYw4
https://www.youtube.com/watch?v=2Qy8fugua80
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2.
A B C

DEF

Figure 5.3.9 The graph for Question 2. Is it a tree, or no?
3.

A B C

DEF

Figure 5.3.10 The graph for Question 3. Is it a tree, or no?
The last big idea that we’ll explore is the notion of a weighted graph, which

we introduce with an example.

Example 5.3.11 Consider the graph in Figure 5.3.12. Suppose the vertices
represent stations in a factory, and the edges represent conveyor belts between
the stations.

Figure 5.3.12 A graph representing the arrangements of conveyor belts between
four stations in a factory.

A manager in the factory may be interested in how efficiently the conveyor
belts can be run. Suppose that belt cd costs $11/day to run, belt de costs
$8/day to run, belt cf costs $9/day to run, belt df costs $12/day to run, and
belt ef costs $11/day to run. We can represent this by labeling each edge with
its cost, as seen in Figure 5.3.13.
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Figure 5.3.13 A weighted graph representing the arrangements of conveyor
belts between four stations in a factory.

This is an example of a weighted graph, which is just a graph with the
edges labeled. The labels usually represent something meaningful about the
situation the graph represents. For example, we could have weighted the edges
in Figure 5.3.13 with the time it takes to move an object from one station to
another, or the distance between stations (as one might find on a map), etc. �

We tie this all together with the concept of a minimal spanning tree,
which is a spanning tree with the smallest total weight.

Example 5.3.14 Again, consider the weighted graph representing our conveyor
belt in Figure 5.3.13. The total cost to run the belts for one day is $51. Assume
that eliminating a belt does not substantially increase the cost of running the
others. How could we find a lower-cost arrangement?

images/video-3.jpg

YouTube: https://www.youtube.com/watch?v=fXfsHOVSy2U

�
There are several algorithms for finding minimum weight spanning trees in

addition to the one presented in Example 5.3.14. A famous such example is
Prim’s algorithm.

Algorithm 5.3.15 Prim’s Algorithm. An important algorithm, due to
Vojtěch Jarník and later rediscovered and published by Robert Prim and Edsger
Dijkstra, provides a minimum-weight spanning tree as follows:

1. Choose one of the vertices of the graph.

2. Grow the tree by finding an edge of minimum weight which connects the
existing tree to a vertex in the graph not yet in the tree, and put this edge
in the tree.

3. Continue until all the vertices of the graph are in the tree.

https://www.youtube.com/watch?v=fXfsHOVSy2U
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The algorithm is demonstrated in the video below.

images/video-4.jpg

YouTube: https://www.youtube.com/watch?v=QoF1b9t4DGQ

In this section, we introduced the idea of a tree; given a connected graph G,
of particular interest is a spanning tree for G, which contains all the vertices
of G. We are often interested in spanning trees of minimum weight, which
may represent things like minimum distances or costs. There are several
algorithms for calculating minimum weight spanning trees; one is often called
Prim’s algorithm and works by growing the tree from one vertex, adding a
minimum-weight edge at each step.

Exercises
1. Is the following graph a tree? Explain.

A B C

D

EFG

H I

2. Is the following graph a tree? Explain.
A B C

D

EFG

H I

3. Is the following graph a tree? Explain.
A B C

D

EFG

H I

4. Do some internet research to find at least one application of spanning trees.
Describe the application, who is interested in it, and why.

5. Consider the state capitals of the upper Midwestern U.S. to be: St. Paul,
MN; Bismarck, ND; Pierre, SD; Lincoln, NE; Des Moines, IA; Madison,
WI; Springfield, IL.
(a) Calculate the distance from each state capital to the others. Use

this information to create a weighted graph.

(b) Calculate a minimum weight spanning tree of the graph you just
found.

(c) How could this minimum wieght spanning tree be useful?

https://www.youtube.com/watch?v=QoF1b9t4DGQ


Chapter 6

Modular Arithmetic and Cod-
ing Theory

In this short chapter, we explore an extension of arithmetic called modular
arithmetic, which comes to us from the mathematical discipline of number
theory. We’ll also see one application of these ideas to coding theory, which is
the study of the reliable transmission of information.

6.1 Adding in Circles

Motivating Questions.

In this section, we will explore the following questions.
1. What is congruence modulo m?

2. How can we do arithemtic modulo m?

3. What are some real-world examples of congruence?

This topic comes to us from the realm of mathematics known as number
theory, which is all about the properties of the integers: positive whole numbers,
negatives of whole numbers, and zero. Number theory is one of the oldest
branches of mathematics; some of its hallmark theorems, still vital and taught
today, have been known for thousands of years. And many of the deep structural
features of the integers have found modern application in the hiding and
transmitting of information. It is toward this last application that we now turn.

First, however, we need to be reminded of a suprisingly important result
from school mathematics. We begin with some warmup questions.

Warmup 6.1.1 For each pair of positive integers given below, perform long
division to divide the first number by the second.

1. 42, 6

2. 42, 8

3. 71, 9

4. 0, 17

5. 9, 71

61
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6. 8675309, 627

The Division Algorithm.

Let a and m be integers, with m > 0. Then there exist unique integers
q, r, 0 6 r < m, such that

a = m · q + r.

We call a the dividend, m the divisor, q the quotient, and r the
remainder.

Activity 6.1.2 For each long division problem from Warmup 6.1.1, identify
the dividend, divisor, quotient, and remainder as described in the Division
Algorithm. What do you notice? What do you wonder?
Discussion 6.1.3 What is meant by the word “unique” in the Division Algo-
rithm? Or, put slightly differently, when dividing 71 by 9, why do you think we
do we not give a quotient of 6 and remainder of 17?

Of primary importance for us will be a consideration of the remainders
obtained by dividing by a fixed positive integer m > 1.

Activity 6.1.4 Throughout this activity, we will be dividing bym = 5. However,
you should be thinking about how the answers might differ if we divide by a
different integer m.

1. What remainders do you obtain when dividing the integers 12, 16, 20, 24, 33
by 5?

2. What remainders do you obtain when dividing the integers 39, 52, 80, 108, 166
by 5?

3. What remainders are possible upon division by 5? How do you know?

4. What remainders do you expect to be possible upon division by 103? How
do you know?

5. For each of the five integers from the first question, find the integer from
the second question whose remainder upon division by 5 is the same and
write the pairs in a list.

6. For each pair in the list you made in the previous question, find the
difference between the two integers and divide that number by m = 5.
What do you notice? What do you wonder?

The work you did in Activity 6.1.4 provides motivation for the following
definition.
Definition 6.1.5 Let a, b be integers and m > 1 an integer. We say that a and
b are congruent modulo m if a and b have the same remainder upon division
by m. In this case, we write a ≡ b mod m and call m the modulus.

Equivalently, we say a and b are congruent modulo m if m evenly divides
b− a. ♦

Let’s explore this definition a bit more.

Activity 6.1.6 For the given values below, determine whether a ≡ b mod m.
1. a = 71, b = 39, m = 16

2. a = 17, b = 19, m = 4

3. a = 832, b = 584, m = 31
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Congruence modulo m possesses several important properties. We highlight
three of them in the following theorem.

Theorem 6.1.7 Let m > 1 be an integer, and suppose a, b, c are integers.
• Congruence is reflexive: a ≡ a mod m

• Congruence is symmetric: If a ≡ b mod m, then b ≡ a mod m.

• Congruence is transitive: If a ≡ b mod m and b ≡ c mod m, then
a ≡ c mod m.

Now that we are a bit more familiar with the definition, let’s test its limits.

Exploration 6.1.8 Choose two different values of m, and for each value you
choose, find two values of a and b so that a ≡ b mod m.

1. Now choose a third integer c. For the integers you chose, is it true that
a+ c ≡ b+ c mod m? Is it true that a− c ≡ b− c mod m? What about
a · c ≡ b · c mod m?

2. For each integer c you chose, find an integer d such that c ≡ d mod m. Is
it true that a+ c ≡ b+ d mod m? Is it true that a− c ≡ b− d mod m?
What about a · c ≡ b · d mod m?

3. Finally, note that 5 · 2 ≡ 3 · 2 mod 4. Does it follow that 5 ≡ 3 mod 4?
Our discoveries in Exploration 6.1.8 delineate the operations known as

modular arithmetic: we may add, subtract, and multipy integers mod m,
but we may not divide.

Activity 6.1.9 Find the smallest nonnegative integer x satisfying:
1. x ≡ 9 · 4 mod 5

2. x ≡ 103 + 405 mod 10

3. x ≡ 56 + 6 mod 7

4. x ≡ 9 · 99 mod 5

Questions.

Consider the following questions, and what they have to do with modular
arithmetic.

1. What day of the week will it be 62 days from now?

2. What month will it be 40 months from now?

3. What time will it be 27 hours from now?

In this section, we explored the notion of congruence modulo m. We saw that
we can reduce any integer x to its remainder upon division by m, and then do
arithemtic operations of addition, subtraction, and multiplication mod m. This
corresponds to natural cyclical process, such as times and dates.

In the next section, we’ll see how modular arithmetic can be used to reliably
transmit information.

Exercises
1. Find all solutions to the congruence 6 + x ≡ 5 mod 15.
2. Find all solutions to the congruence 6x ≡ 5 mod 15.
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3. Let m > 1 be an integer and let a be any integer. Explain why a is divisible
by m if and only if a ≡ 0 mod m.

4. Recall that the decimal representation of a number is a sum of powers of
10; for instance, 6429 = 6 · 103 + 4 · 102 + 2 · 10 + 9 · 1.
(a) Reduce 10 mod 3 and 102 ≡ 100 mod 3.

(b) What do you think it the smallest whole number x satisfying x ≡ 10k

mod 3 for any positive integer power k?

(c) Explain why 6429 ≡ 6 + 4 + 2 + 9 mod 3.

(d) Use your answers to these questions and Exercise 6.1.3 to guess a way
to determine if a number is divisible by 3. Explain your thinking.

6.2 Coding Theory

Motivating Questions.

In this section, we will explore the following questions.
1. How can modular arithmetic be applied to the transmission of

information?

2. How does the UPC check digit scheme work? What errors can it
detect? What errors can it correct?

Activity 6.2.1 Get into groups of (ideally) 7-10 (larger is better!) and sit in a
line. Then play the game of telephone: one person, sitting at the end, whispers
a short message to the person sitting next to them. They then turn and whisper
it to the person sitting next to them, and so on until the last person receives the
message. The last person shares the message they received, and it is compared
to the original version.

Part of the fun of the activity is that the message is often garbled somewhere
along the line; what could be done to mitigate this? Brainstorm a couple of
ideas and be ready to share them with the class.

In Section 6.1, we learned about modular arithmetic, which works by
considering the remainders obtained upon division by a fixed number m. In this
section, we’ll consider a relatively recent application of modular arithmetic to
coding theory, which is the mathematical study of transmitting information.

The basic problem of coding theory is as follows: in order to send information
from one entity to another, it needs to be encoded in some form by the sender
(e.g., written, recorded, etc) and transmitted across a channel (e.g., mailed,
emailed, uploaded/downloaded, etc) to the receiver. However, as in the classic
game of telephone, errors can creep into the process—written messages can
be smudged, physical defects or packet loss can corrupt digital messages, and
so on, resulting in information that either cannot be read at all, or can be
misread. How can we be reasonably sure that common errors can be detected,
and, perhaps, corrected?

Activity 6.2.2 Alice wants to send a bit of information to her friend Bob;
for simplicity’s sake, let’s assume she seeks to send a 0 or 1. To improve the
chances that the message is received correctly, she decides to send it three times
in a row. So, if Alice desires to send Bob a 1, she’ll actually send 111; if she
desires to send a 0, she’ll send 000.

1. As described above, errors can creep into the transmitted messsage;
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perhaps Alice sends Bob 111 and that is what he receives, but what if
he receives 101? Or 100? How should Bob interpet those two (different)
messages?

2. What strengths and weaknesses do you see in Alice’s system? How
could you improve the chances that Bob interprets Alice’s message as she
intends?

3. Perhaps you decided that Alice’s system is still too prone to errors, so
you decide she should send the intended digit seven times instead of 3. In
what way(s) is this revised system better? Worse?

Lots of information is encoded using numbers, which makes the reliable
transmission of numbers an important problem to solve. A fundamental example
is alluded to in Activity 6.2.2, wherein we consider the transmission of a binary
digit, 0 or 1—this is the language of digital computers. The actual codes that
are used to transmit digital signals over the internet rely on lots of sophisticated
mathematics and so are beyond the scope of our work here.

However, certain codes are within the grasp of those familiar with modular
arithmetic. We turn to one such example now: the UPC check digit scheme.

Universal Product Codes (UPCs) are found on most items available for
sale (though books have their own identifiers called International Standard
Book Numbers, or ISBNs)UPCs are often encoded with barcodes so as to be
machine-readable. We will concern ourselves only with the digits, not the
barcodes.

Let’s consider the UPC from a copy of the game “The Resistance”:

7− 22301− 92617− 8.

The first digit (7) indicates a product type. This is typically 0, 1, or 6-9 (other
digits are reserved for coupons, loyalty cards, etc). The first group of five digits
(22301) is a manufacturer number, while the second group of five digits (92617)
describes the product. The last digit (8) is known as the check digit; it is
chosen so that

(3 · 7 + 2 + 3 · 2 + 3 + 3 · 0 + 1 + 3 · 9 + 2 + 3 · 6 + 1 + 3 · 7 + 8) ≡ 0 mod 10.

More generally, if the digits of a UPC are d1−d2d3d4d5d6−d7d8d9d10d11−d12,
the check digit d12 is chosen so that

(3·d1+d2+3·d3+d4+3·d5+d6+3·d7+d8+3·d9+d10+3·d11+d12) ≡ 0 mod 10.

The check digit is called thus as it is an extra bit of information which helps
validate everything that came before it. Recall that our primary question is:
how can we send information reliably over a channel? That is, how can we send
information in such a way that we can (a) if the information received is the
same as what we sent, and (b) if not, (ideally) correct the information?

Activity 6.2.3 Consider the following questions.
1. Calculate the check digit d for the UPC 1− 03792− 19302− d.

2. Is 8− 62069− 00678− 9 a valid UPC? Explain. If it is invalid, change it
to be a valid UPC.

We saw in Activity 6.2.3 that the check digit scheme can determine that a
given proposed UPC is invalid. However, we have no clear understanding of
what went wrong. Were two (or more) digits transposed? Did we simply record
a digit incorrectly? In Exploration 6.2.4, we’ll see what sorts of errors can be
detected.
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Exploration 6.2.4 As best you can, answer the following questions.
1. Consider the following UPC with missing digit d:

7− 2d920− 16431− 8.

Can you determine the value of d?

2. A certain box of chalk has UPC 6 − 15867 − 28380 − 2. Choose two
adjacent digits (e.g., 6 and 1) and switch their places. Is the resulting
12-digit number still a valid UPC? How can you tell?

3. A certain product has UPC 0− 55005− 00550− 5. Choose two adjacent
digits and switch their places. Is the resulting 12-digit number still a valid
UPC? How can you tell?

In this section, we learned about the main problem of coding theory: how
can we reliably transmit information across a noisy channel (as in the game
of telephone)? We saw that number theory has been used to encode “extra”
information into Universal Product Codes. This extra information allows us
to recover missing digits and detect if a given 12-digit code is valid or not. If
all 12 digits are present and the code is invalid, the UPC check digit scheme
cannot generally allow us to identify what went wrong in transmission.

Exercises
1. The following is presented as a possible UPC; is it valid? Explain.

8− 05500− 28542− 5
2. The following is presented as a possible UPC; is it valid? Explain.

0− 47495− 11254− 2
3. Identify the missing digit in the following partial UPC.

0− 3x915− 90093− 8
4. Sam is learning to write his letters, but sometimes confuses the 6 and the

9. He records the following UPC; is it valid? If so, justify. If not, can you
correct it so that it is?

1− 64252− 72124− 7
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67



MODULAR ARITHMETIC AND CODING THEORY 68

One of the goals of this text is to expand the domain of mathematical ques-
tions to new areas. While we need to be careful to not overreach, mathematical
ways of knowing have recently illuminated many interesting questions, and
occasionally answered them.

An example of this involves recent mathematical explorations of democracy.
In Chapter 7, we will consider mathematical analyses of various methods of
choosing winner(s) of elections and discuss the question: is there a single best,
fairest system?

As we will see, mathematics helps us explore these questions, but it cannot
provide perfect answers, as human desires—for justice, fairness, and equity—
are not mathematical constructs.



Chapter 7

Voting

7.1 Elections with Two Candidates

Motivating Questions.

In this section, we will explore the following questions.
1. What is a voting system?

2. What are some common means of choosing winners of elections?

3. What are some drawbacks for these common systems?

Our main task in this chapter is to explore the mathematics of voting
systems. A voting system refers both to the ways votes are cast in elections
and the way those votes are used to determine a winner.

We will see in this section that while two-candidate systems are fairly
straightforward, they provide a fertile ground for exploring the characteristics
we desire in all systems. We first want to determine how each system treats
the voters and the candidates. A fair system should aim to treat each voter
and each candidate equally.

Activity 7.1.1 It is time for the citizens of Scranton to elect a new mayor,
and they have two choices: Angela and Stanley. How could the winner of this
election be determined? How should the winner of this election be determined?
Investigation 7.1.2 If Activity 7.1.1 seemed too easy, consider the following
(likely alternative) suggestion.

Angela’s husband, Dwight, has been a longtime player in Scranton politics.
Thus, the system Scranton has adopted is: everyone votes, but whomever
Dwight votes for will be declared the winner, regardless of how the other votes
are cast.

Of the 76,328 citizens of Scranton, suppose 76,327 vote for Stanley, and
Dwight votes for Angela. Who wins the election?

The method described in Investigation 7.1.2 is known as a dictatorship,
with Dwight as the dictator. We note that, in the context of voting theory, the
word dictatorship only refers to how the outcomes of elections are determined
and has nothing to do with the system of government.

Exploration 7.1.3 Does a dictatorship treat all voters equally? That is, does
every vote count “the same”? Does a dictatorship treat the candidates equally?
Explain.

69



CHAPTER 7. VOTING 70

Investigation 7.1.4 If a dictatorship isn’t your style, try this one: before the
election runs and the citizens of Scranton vote, it is decided that Angela will
win. Does this method treat all of the voters equally? That is, do all votes
count the same? Does it treat the candidates equally? That is, could each
candidate win, depending on the how the votes come in? Explain.

The method described in Investigation 7.1.4 is known as imposed rule.
Let’s try one more system on for size.

Investigation 7.1.5 Consider the following system. Each citizen of Scranton
votes, and the votes are counted. The winner is the candidate with the smallest
number of votes. This is known as minority rule.

1. Suppose that the citizens of Scranton vote, with 76,327 voters voting for
Stanley and one (Dwight, no longer a dictator) votes for Angela. Who
wins under minority rule?

2. Now suppose that Dwight convinces 38164 of the prospective Stanley
voters to switch and vote for Angela. Who wins in this case under minority
rule?

3. Does minority rule treat all voters equally? Does it treat all candidates
equally? Explain.

4. Under minority rule, is it beneficial or detrimental for a candidate to
receive additional votes? Explain.

In our quest for a mathematically just voting system, we will find it helpful
to define certain desirable qualities for a fair and just system to satisfy. However :
When we say that a voting system satisfies a certain criterion, we mean that it
always satisfies it; that is, it can never violate that criterion. We will refer to
these important criteria as fairness criteria. We have already observed a few
important criteria that we now formally define.

Definition 7.1.6 A voting system for a two-candidate election is anonymous
if it treats all voters equally. That is, if any two voters switched their votes,
the outcome of the election should remain the same.

A voting system for a two-candidate election is neutral if it treats both
candidates equally. That is, if every voter changes their vote, the outcome of
the election should also change.

A voting system for a two-candidate election is monotone if is impossible
for a winning candidate to become a losing candidate by gaining votes (and
not losing any others), or for a losing candidate to become a winning candidate
by losing votes (and not gaining any others). ♦

Investigation 7.1.7 Now suppose three members of the board of the Dunder
Mifflin Paper Company are voting to determine who should take over the
business. The candidates are Michael and Andy. In order to vote, their “friend”,
Toby, has devised a voting system. Three possible combinations of votes
by Jim, Pam, and Kevin are presented in [cross-reference to target(s)
"table-officevote" missing or not unique].
Table 7.1.8 The results of Toby’s voting system.

Jim Pam Kevin Winner

A M M A

A A M M

M M A M
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1. Which of the three properties described in Definition 7.1.6 are satisfied
by Toby’s voting system? Explain.

2. Is Toby’s sytem equivalent to any of the other three systems we’ve inves-
tigated thus far? Why or why not?

Investigation 7.1.9 Let’s investigate the three criteria in Definition 7.1.6 in
relation to the three voting systems we’ve examined.

1. Which of the three fairness criteria are satisfied by dictatorships? Explain
clearly for each of your answers.

2. Which of the three fairness criteria are satisfied by imposed rule? Explain
clearly for each of your answers.

3. Which of the three fairness criteria are satisfied by minority rule? Explain
clearly for each of your answers.

The two-candidate voting system we haven’t yet explored is probably the
one that you actually suggested in Activity 7.1.1. Perhaps it is something like:

Each voter should vote for the candidate they want to win the
election. Whichever candidate gets the most votes wins the election.

This is known as majority rule.
Investigation 7.1.10 Which of the three fairness criteria does majority rule
satisfy? Explain.

In fact, for elections with two candidates, majority rule is the only system
to satisfy all three fairness criteria.

Theorem 7.1.11 (K. May (1952)) In a two-candidate election with an odd
number of voters, majority rule is the only voting system that is anonymous,
neutral, and monotone and avoids the possibility of a tie.

Thus, for elections with two candidates, there is a clear fair and just choice for
a voting system subject: majority rule. However, as we know, most elections
don’t have just two candidates, so in the remainder of this chapter we will
consider the question of fairness in the context of these larger elections. We’ll
refine the existing fairness criteria to handle three or more candidates, and
develop additional criteria due to surprising situations that can arise.

7.2 Plurality and the Borda Count

Motivating Questions.

In this section, we will explore the following questions.
1. How are elections with two candidates different from those with

more than two?

2. What is a plurality, and how is it different than a majority?

3. How can we fairly evaluate voting systems with multiple candi-
dates?

7.2.1 Describing the Problem
Let’s begin with a warmup activity.
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Activity 7.2.1 The popular vote totals from the state of Florida in the 2000
U.S. presidential election are given in Table 7.2.2.
Table 7.2.2 The Florida popular vote in 2000.

Candidate Popular Votes

George W. Bush 2,912,790

Al Gore 2,912,254

Ralph Nader 97,488

Others 40,579

1. In this election, did any candidate receive a majority (more than half)
of the popular votes cast in the state of Florida?

2. Suppose the system used in Florida in 2000 is: whoever gets the most
votes wins. Under this system, who wins the presidential popular vote
in Florida in 2000? By how many votes does this person win? By what
percentage of the vote does this person win?

3. If George W. Bush and Al Gore had been the only candidates on the
ballot in Florida in 2000, do you think that Gore might have possibly
received more popular votes than Bush in Florida?

In fact, many political scientists believe that Ralph Nader was a spoiler
candidate for Gore in 2000; that is, they believe that a large percentage of
the Nader voters likely would have voted for Gore if Nader had not been on
the ballot. In this section, we’ll explore the wrinkles introduced by additional
candidates, and develop alternative systems for choosing winners of elections.
First, we’ll define an important term for a concept you are likely already familiar
with.
Definition 7.2.3 A candidate in an election who receives more votes than any
of the other candidates is said to receive a plurality of the votes cast. ♦

It is crucial that we understand the difference between plurality and majority.
Discussion 7.2.4

1. For elections with two candidates, explain why the words plurality and
majority mean exactly the same thing.

2. For elections with more than two candidates, explain why the words
plurality and majority do not mean exactly the same thing.

We adopt the following definitions.

Definition 7.2.5 Consider an election with more than two candidates.
• Majority rule is the voting system that elects the candidate who receives

more than half the votes, if such a candidate exists. If no such candidate
exists, the election is declared a tie with no winner.

• The plurality method is the voting system that elects the candidate
that receives the largest number of votes. The plurality method only
produces a tie when two candidates receive exactly the same number of
votes, and this number is more than any other candidate.

♦

Discussion 7.2.6
1. Which of the two methods described in Definition 7.2.5 do you think is
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more likely to result in a tie?

2. If a candidate wins an election under majority rule, would that candidate
also be guaranteed to win under the plurality method?

3. If a candidate wins an election under the plurality method, would that
candidate also be guaranteed to win under majority rule?

We now explore the plurality method in more depth. Because it is familiar,
it likely seems quite fair. But let’s consider the next exploration.

Exploration 7.2.7 It’s time to vote for the mayor of Scranton again, and this
time there are thirteen candidates: Jim, Pam, Michael, Dwight, Andy, Angela,
Kevin, Stanley, Phyllis, Ryan, Kelly, Meredith, and Toby.

1. Suppose Kevin wins with 6,000 votes out of 76,328 cast. Did he receive a
majority of the votes cast for mayor? (You may want to convince yourself
that this is possible!) What percentage of the overall vote did he receive?

2. What is the smallest number of votes Kevin could have received and still
won the election? (Be careful!)

3. Under the scenario described in the previous question, what is the largest
number of voters who could have preferred Kevin least among all 13
candidates and still left him with a chance at winning the election?

4. Using your answers to the previous question, carefuly articulate a critique
of the plurality method.

7.2.2 A solution
As we saw in Exploration 7.2.7, when there are N candidates, it is possible for
the vote to be split so thoroughly that one candidate can win with just over
1/N -th of the vote. In this case, a majority of the voters will prefer someone
other than the person who is ultimately elected. But as we saw, the situation
can get even worse than that—it’s possible for the candidate who wins the
plurality of the vote to be the last choice of a majority of voters, but still win!
The main reason that the plurality method is susceptible to this is that it only
accounts for a voter’s first choice; there is no penalty for being a voter’s last
choice, and no benefit to being the voter’s second choice.

We will therefore explore methods of voting and fairness criteria that account
for a full top-to-bottom ranking of candidates by voters, called a preference
order. If there are three candidates in an election, say Michael, Angela, and
Stanley, and my preference order is that Michael is my top candidate, Stanley
my second choice, and Angela my third, we may write M � S � A, where the
symbol � means "is preferred to".

Activity 7.2.8
1. Consider a 3-candidate election for the mayorship of Scranton between

Michael, Angela, and Stanley. How many possible preference orders are
there? In other words, in how many different ways could the voters rank
them?

2. Suppose their friend Toby enters the race, bringing the total number of
candidates to 4. Now how many preference orders are possible now?

Since our voters will be casting preference ballots, we need a different
way of displaying the votes cast.
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Exploration 7.2.9 Suppose Stanley, Toby, Angela, and Michael are running for
the presidency of Dunder Mifflin, the premier paper company in Scranton. The
preference orders for each of the 13 board members of the company are displayed
in Table 7.2.10, a visualization known as a preference schedule. The column
headings indicate the number of voters with the preference order displayed in
the column. For instance, the first column shows that 6 shareholders have the
preference order S � A � T � M . Note that the preference orders displayed
are the five that were cast as preference ballots in the election; there are many
others that were possible but not cast, and thus are not displayed.
Table 7.2.10 Preference schedule for the presidency of Dunder Mifflin.

Rank 6 3 2 1 1

1 S T A M A

2 A A M T T

3 T M T A M

4 M S S S S

1. Under majority rule, what would the outcome of the election be?

2. Under the plurality method, what would the outcome of the election be?

3. Rank the candidates based on the outcome produced by the plurality
method. The final ranking of candidates by a voting system is known as
the societal preference order.

4. Do you think the plurality winner best represents the will and preferences
of the voters? If so, explain why. If not, give a convincing argument for
why you think some other candidate would be better.

7.2.3 The Borda Count
One very popular method for choosing the winner of a multi-candidate election
is the Borda count.
Definition 7.2.11 Consider an election with N candidates. The Borda
count works as follows. Each voter submits a ballot that contains their entire
preference order for all candidates in the election. For each ballot cast, points
are awarded to each candidate according to the following rules:

• A last-place vote is worth 1 point.

• A second-to-last-place vote is worth 2 points.

•
...

• A third-place vote is worth N − 2 points.

• A second-place vote is worth N − 1 points.

• A first-place vote is worth N points.

The candidate who accumulates the largest number of total points from all of the
ballots is declared the winner, and the societal preference order is determined
by listing the candidates in order of the number of points they received, largest
to smallest. If two or more candidates are tied with the largest number of
points, they are all declared winners (or some suitable prearranged tiebreaking
procedure is used). ♦
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Activity 7.2.12 Under the Borda count, what would the outcome of the
Dunder Mifflin presidential election in Exploration 7.2.9 be?

Consider the following interesting feature of the Borda count.

Activity 7.2.13 Controversy at the Dunder Mifflin! Due to some shenanigans
involving a major shareholder, the election displayed in Table 7.2.10 has to be
rerun. The following preference schedule is produced.
Table 7.2.14 Preference schedule for the presidency of Dunder Mifflin.

Rank 6 3 2

1 S T A

2 A A M

3 T M T

4 M S S

1. Who wins under majority rule?

2. Who wins under the Borda count? Does this seem strange to you?
Lest you think this is a contrived example, be aware that things like this

can happen in real life. A version of the Borda count is used by the Associated
Press to rank the top 25 college football and basketball teams. In the 1971 AP
preseason poll, the author’s Nebraska Cornhuskers received 26 of 50 first-place
votes, yet were ranked #2. The results of things like this AP polling anomaly
or Activity 7.2.13 suggest a new fairness criterion.

Definition 7.2.15 A voting system satisfies themajority criterion if whenever
a candidate is ranked first by a majority of voters, that candidate will be ranked
first in the resulting societal preference order. ♦

Discussion 7.2.16 Of all the voting systems we’ve explored thus far, which
must always satisfy the majority criterion?

In Section 7.1, we defined three fairness criteria. Our definitions from
Definition 7.1.6 can be modified to extend in a natural way to elections with
three or more candidates.
Definition 7.2.17

• A voting system is anonymous if it treats all of the voters equally,
meaning that if any two voters traded preference orders, the outcome of
the election (and the resulting societal preference order) would remain
the same.

• A voting system is neutral if it treats all of the candidates equally,
meaning that if every voter switched the positions of two particular
candidates in their individual preference orders, the positions of these two
candidates would switch in the resulting societal preference order as well.

• A voting system is monotone if changes favorable only to a particular
candidate in individual preference orders cannot cause that candidate to
be ranked lower in the resulting societal preference order.

♦

Exploration 7.2.18
1. Which of the properties of anonymity, neutrality, and monotonicity are sat-

isfied by plurality? Which are not satisfied? Give a convincing argument
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to justify each of your answers.

2. Which of the properties of anonymity, neutrality, and monotonicity are
satisfied by the Borda count? Which of these three properties are not
satisfied? Give a convincing argument to justify each of your answers.

3. Do either of your answers to Questions 1 or 2 contradict Theorem 7.1.11?
Explain.

In this section, we have seen that things become more complicated when we
consider more than two candidates. In an election with only two candidates, a
vote for one implicitly ranks the other candidate second. With more than two
candidates, not only can societal preferences be more diffuse, but they are also
more complex than can be captured with simple plurality voting. It is possible
for a candidate who is the least desirable choice of an overwhelming majority
of the voters to win if there are enough other candidates.

In the next section, we will explore additional voting systems and fairness
criteria that attempt to overcome the shortcomings of the Borda count.

7.2.4 Exercises
1. Consider the election run between Paul (P), Tom (T), Sally (S), and Ann

(A) as shown in the table below.
Table 7.2.19

Rank 5 5 4 2 1

1 S T P P A

2 T A S T T

3 P S A S P

4 A P T A S

(a) Does any candidate receive a majority of first-place votes? Explain.

(b) Determine the outcome of the election under majority rule. Explain.

(c) Determine the outcome of the election using the plurality method.
Explain.

(d) Determine the outcome of the election using the Borda count. Ex-
plain.

2. As described in this section, the plurality method suffers when there are a
large number of candidates. Read about the 2016 Republican presidential
primary process. How many candidates were there? How many (total)
votes were cast? Assuming the only thing that mattered was the total
number of first-place votes received, how few votes could a candidate have
(hypothetically) received and still been declared the winner?

3. As described in the text, a form of the Borda count is used to rank college
sports teams in the U.S. Find another use of the Borda count in a different
context (e.g., a political one), and do some research to determine why it
was chosen.
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7.3 Pairwise Comparisons and Instant Runoff
Voting

Motivating Questions.

In this section, we will explore the following questions.
1. How should head-to-head preferences figure into an election out-

come?

2. What is the method of pairwise comparisons? What are its
strengths and weaknesses?

3. What is instant runoff voting? What are its strengths and weak-
nesses?

4. What does Arrow’s Theorem say, and what are its consequences
for democracy?

7.3.1 Pairwise Comparisons
Consider the following situation1.

Activity 7.3.1 Suppose Skip, Norm, and Jesse are all running for President of
the 10,000 Lakes Club, with the preferences of the 100 members of the club as
shown in Table 7.3.2.Table 7.3.2 The preference schedule schedule for the 10,000 Lakes
Club presidency.

Rank 35 28 20 17

1 N S J J

2 S N N S

3 J J S N

1. What would be the outcome of the election under majority rule?

2. What would be the outcome of the election under plurality?

3. What would be the outcome of the election under the Borda count?

4. Which candidate is ranked first by the largest number of voters?

5. Which candidate is ranked last by the largest number of voters?

6. In a head-to-head contest between just Skip and Norm, who would win?

7. In a head-to-head contest between just Skip and Jesse, who would win?

8. In a head-to-head contest between just Norm and Jesse, who would win?

9. Does anything about your answers to Questions 1-8 strike you as being
strange or unusual?

In Activity 7.3.1, we saw that the plurality method can fail to elect a
candidate who would win a head-to-head matchup against all other candidates.

1Borrowed, again, from Hodge and Klima’s The Mathematics of Voting and Elections,
2nd ed.2

https://bookstore.ams.org/mawrld-30/
https://bookstore.ams.org/mawrld-30/
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Perhaps worse, we also saw that plurality can elect a candidate who would lose
a head-to-head matchup against all other candidates. This has struck voting
theorists as unfair, and we make the following definition, named after Marie
Jean Antoine Nicolas de Caritat, the Marquis de Condorcet.

Definition 7.3.3 A Condorcet winner is a candidate in an election who
would win a head-to-head contest (with the winner decided by majority rule)
against each of the other candidates.

A Condorcet loser is a candidate in an election who would lose a head-to-
head contest (with the winner decided by majority rule) against each of the
other candidates.

A voting system that will always elect a Condorcet winner, whenever one
exists, is said to satisfy the Condorcet winner criterion (CWC).

A voting system that will never elect a Condorcet loser is said to satisfy the
Condorcet loser criterion (CLC). ♦

Exploration 7.3.4 Consider the preference schedule in Table 7.3.5.
Table 7.3.5 A preference schedule.

Rank 1 1 1

1 A B C

2 B C A

3 C A B

1. In a head-to-head contest between just candidates A and B, who would
win?

2. In a head-to-head contest between just candidates B and C, who would
win?

3. In a head-to-head contest between just candidates A and C, who would
win?

4. Does anything about Questions 1-3 strike you as unusual?

5. Is there a Condorcet winner and/or loser in this election? Explain.

Investigation 7.3.6
1. Explain why a candidate who received a majority of first-place votes is

also a Condorcet winner.

2. Does your answer to Question 1 imply that majority rule satisfies the
CWC? If so, explain why. Otherwise, give an example to show that
majority rule can violate the CWC.

3. Does your answer to Question 1 imply that majority rule satisfies the CLC?
If so, explain why. Otherwise, give an example to show that majority rule
can violate the CLC.

4. Are there special types of elections for which majority rule does satisfy
the CWC? Give a convincing argument to justify your answer.

5. Use your answer to Question 1 to explain why any voting system that
violates the majority criterion (Definition 7.2.15) must also violate the
CWC.

6. Use your answer to Question 5 to explain why the Borda count violates
the CWC.
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In order to find a voting system that satisfies the CWC and CLC, let’s
return to the Dunder Mifflin presidential election in Exploration 7.2.9.

Exploration 7.3.7 Consider the following proposed voting system, using
Table 7.2.10 as the preference schedule.

• Step 1: List all possible head-to-head matchups between candidates.

• Step 2: Determine the winner of each head-to-head matchup. Award 1
point for each win, 0 points for a loss, and 1/2 point to each in the event
of a tie.

• Step 3: The candidate with the most points from Step 2 wins.

Consider the method described above.

1. Under this method, who wins the presidency of the Bluth Company?

2. Under this method, what societal preference order is produced?

3. Is there a Condorcet winner and/or loser in this election? Explain.

The method described above is known as the method of pairwise com-
parisions (PWC). What strikes you as being different or unusual about it,
especially compared to the plurality and Borda count systems we’ve already
explored?
Investigation 7.3.8

1. Could a Condorcet winner ever lose a head-to-head contest with another
candidate? Why or why not?

2. What does your answer to Question 1 allow you to conclude about the
method of pairwise comparisons and the CWC?

3. Does the method of pairwise comparisons satisfy the CLC? If so, explain
why. Otherwise, give an example of a preference schedule for the method
of pairwise comparisons could elect a Condorcet loser.

As we have just seen, the method of pairwise comparisons satisfies the CWC.
This means that it will always elect a Condorcet winner if one exists. However,
when a Condorcet winner does not exist, strange things can happen.

Investigation 7.3.9 Consider the preference schedule given in Table 7.3.10.
Table 7.3.10 A preference schedule.

Rank 10 3 7 6

1 C E D B

2 E A A A

3 D D C C

4 A C B D

5 B B E E

1. Who wins this election using the method of pairwise comparisons?

2. Is there a Condorcet winner? A Condorcet loser?

3. Due to a scandal following the counting of the votes, candidate D with-
draws. The election is re-run using the votes already cast, again with the
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method of pairwise comparisons. Who wins?

4. Does this seem strange?
The phenomenon observed in Investigation 7.3.9 is an example of a violation

of a new fairness criterion, the independence of irrelevant alternatives. It’s more
subtle than some of the others, so we’ll present a few versions of it.

Definition 7.3.11 If a voting system has the property that the societal pref-
erence between any two candidates depends only on the voters’ preferences
between those two candidates, then the system is said to satisfy the indepen-
dence of irrelevant alternatives criterion (IIA).

Put another way, a voting system satisfies IIA if some or all of the voters in
an election change their preference ballots but no voter changes their preference
between two candidates A and B, then the societal preference between A and
B must also remain unchanged.

Or, if an election is run and produces X as the winner, and later a non-
winning candidate Y drops out, then X should still be the winner of the election.

♦
IIA is often interpreted as saying that if a candidate (A) would win an

election, and a new candidate (B) were added to the ballot, then either A or B
should win the election. A further delightful illustration of a violation of IIA is
attributed to Sidney Morgenbesser3:

After finishing dinner, Sidney Morgenbesser decides to order dessert.
The waitress tells him he has two choices: apple pie and blueberry
pie. Sidney orders the apple pie. After a few minutes the waitress
returns and says that they also have cherry pie at which point
Morgenbesser says “In that case I’ll have the blueberry pie.”

Let’s consider our current systems and IIA.

Investigation 7.3.12
1. Does plurality satisfy IIA? Why or why not?

2. Does the Borda count satisfy IIA? Why or why not?

3. Does PWC satisfy IIA? Why or why not?
Exploration 7.3.13 Is the method of pairwise comparisons anonymous? Mono-
tone? Does it satisfy the majority criterion? Justify your answers.

Let’s take stock of where we’re at.
Activity 7.3.14 Fill in Table 7.3.15, indicating whether each voting system
satisfies the given criteria.
Table 7.3.15 Voting systems and fairness criteria

Anonymous Neutral Monotone Majority CWC CLC IIA

Majority rule

Plurality

Borda count

PWC

3https://en.wikipedia.org/wiki/Sidney_Morgenbesser

https://en.wikipedia.org/wiki/Sidney_Morgenbesser
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7.3.2 Instant Runoff Voting and Arrow’s Theorem
In this section, we’ll examine one last (new) voting system, called instant
runoff voting (IRV) or ranked choice voting (RCV).

This system was proposed in the mid-1800s by Thomas Hare, and has
slowly grown in popularity. Other than plurality, it is likely the most widely
used system for choosing elected officials in the U.S. For example, the City
of Minneapolis4 uses IRV for its city-wide elections, and Maine uses it for
all state-wide elections5, including, for the first time in 2020, for the general
election for president6.

Definition 7.3.16 The instant runoff voting (IRV) system works as follows.
1. Each voter in the election submits their entire preference order.

2. If a candidate has a majority of first-place votes, they are declared the
winner.

3. If no candidate has a majority of first-place votes, then the candidate (or
candidates, in the case of a tie) with the fewest first-place votes is elimi-
nated from each voter’s preference order, and the remaining candidates
are moved up, yielding a new preference schedule.

4. Step 2 is repeated until a single candidate remains. That candidate is
declared the winner.

♦

Activity 7.3.17 Consider the hypothetical preference schedule shown in Ta-
ble 7.3.18.Table 7.3.18 A hypothetical election

Rank 6 7 9 3

1 A B C A

2 B C B C

3 C A A B

1. Under IRV, which candidate is eliminated first?

2. Under IRV, which candidate is eliminated second?

3. Who would win the election under IRV? What would be the resulting
societal preference order?

As has been our wont, let’s explore which fairness criteria are satisfied by
IRV.
Investigation 7.3.19 Use Definition 7.2.17 to write a thorough explanation of
why IRV is both neutral and anonymous.
Investigation 7.3.20 Explain why IRV satisfies the majority criterion.
Activity 7.3.21 Consider the election run in Activity 7.3.17. Suppose that the
three voters in the rightmost column of Table 7.3.18 got wind of candidate C’s

4http://vote.minneapolismn.gov/rcv/index.htm
5http://www.rcvmaine.com
6https://www.huffpost.com/entry/maine-ranked-choice-voting-2020_n_

5d72ca74e4b06451356df0f3

http://vote.minneapolismn.gov/rcv/index.htm
http://vote.minneapolismn.gov/rcv/index.htm
http://www.rcvmaine.com
http://www.rcvmaine.com
https://www.huffpost.com/entry/maine-ranked-choice-voting-2020_n_5d72ca74e4b06451356df0f3
https://www.huffpost.com/entry/maine-ranked-choice-voting-2020_n_5d72ca74e4b06451356df0f3
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support and switched their votes to C � A � B to be on the side of the winner.
1. With these new preferences, who would win the election under IRV?

2. Compare your answer to Question 1 of this activity to Question 3 of
Activity 7.3.17. What conclusions can you draw?

3. Do some research on FairVote.org7 about this phenomenon. How do they
respond to a potential critique?

The phenomonon observed in Activity 7.3.21 suggests our last fairness
criterion: the monotonicity criterion.
Definition 7.3.22 A voting system is said to satisfy the monotonicity
criterion if when a candidate X wins, and on a recount or reelection, only
changes favorable to X occur, then X will still win. That is, changes that only
favor the winner should not change the winner. ♦

Investigation 7.3.23 Consider an election between three candidates with the
preference schedule shown in Table 7.3.24.
Table 7.3.24 A hypothetical election.

Rank 1 2 2

1 A B C

2 B A A

3 C C B

1. Is there a Condorcet winner in this election?

2. Who would win the election under IRV?

3. Does IRV satisfy the Condorcet winner criterion? Use your answers to
Questions 1 and 2, together with Definition 7.3.3 (and what we know
about when implications are false! Recall Definition 3.1.11.).

Investigation 7.3.25
1. What about Dunder Mifflin? Who wins the company presidency with the

preference schedule in Table 7.2.10 under IRV?

2. Given all the investigations we’ve done into the Dunder Mifflin presidency,
write an argument to the company’s board of directors arguing for a
particular voting system to be used to choose the company’s president.
Your argument should make some allusion to the fairness criteria we’ve
explored.

At this point, you may be wondering which voting system is best. We saw
a decisive answer if our election has only two candidates (the familiar majority
rule), but when the election has more than two candidates, things have gotten
complicated. Plurality, majority rule, the Borda count, PWC, and IRV all fail
to satisfy at least one of our criteria.

In 1951, economist Kenneth Arrow8 proved the following landmark result.
It states that our quest is hopeless! There is no fairest voting system. Each
has tradeoffs which make it suitable in certain circumstances and unsuitable in
others.

7https://www.fairvote.org
8https://en.wikipedia.org/wiki/Kenneth_Arrow

https://www.fairvote.org
https://en.wikipedia.org/wiki/Kenneth_Arrow
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Arrow’s Impossibility Theorem.

In an election with more than two candidates, it is impossible for a
voting system to satisfy monotonicity, neutrality, anonymity, IIA, the
majority criterion, and the CWC.

In this section, we explored additional voting systems (the method of pairwise
comparisions and instant runoff voting) and fairness criteria (IIA and the
monotonicity criterion). As we saw that none of our systems satisfied all of
our criteria, we were faced with a question: is there any voting system out
there that is completely fair? Arrow’s landmark theorem tells us that no
democratic voting system can satisfy all of our criteria. This does not mean
that our explorations have been fruitless—instead, we’ll need to consider which
criteria are most important to us when selecting a voting system, and choose
accordingly.

7.3.3 Exercises
1. Consider the hypothetical election below.

Table 7.3.26

Rank 8 6 4 2

1 A C D B

2 B A C C

3 D B B A

4 C D A D

(a) Who wins the election using the method of pairwise comparisons?

(b) Suppose that after a scandal emerges, candidate D drops out and
the results are re-tabulated. Who wins the election?

(c) Does the answer to the previous question give an example of a
violation of one of our fairness criteria? Explain.

(d) Suppose instead that, before the original election is run, the four
voters in the third column switch their preference ballot to C � D �
B � A. Who wins the election? Is this an example of a violation of
one of our fairness criteria? Explain.

(e) Using the original preference schedule, who wins the election using
instant runoff voting? Explain.

2. One criticism of non-plurality voting systems is that they are too complex,
or ballots too difficult to understand. Find an article that makes this point
and respond to it in a well-reasoned paragraph or two. Do you agree?
Disagree?
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